

Sheep Research Update

Ann McLaren

SRUC Research

SRUC/SAC Consulting - Future Livestock Farming – 2019

Leading the way in Agriculture and Rural Research, Education and Consulting

Sheep Research

- Range of areas of being investigated
 - Health & Welfare
 - Genetics
 - Behaviour
 - Management Targeted Selective Treatment
 - Meat quality
 - Computer Tomography (CT)
 - New traits
 - Feed efficiency
 - Breeds and systems comparison
 - Other links with technology

Sheep Research

- Range of areas of being investigated
 - Health & Welfare
 - Genetics
 - Behaviour
 - Management Targeted Selective Treatment
 - Meat quality
 - Computer Tomography (CT)
 - New traits
 - Feed efficiency
 - Breeds and systems comparison
 - Other links with technology

Afternoon talk

Disease traits – Scottish Blackface

Antonio.Pacheco@sruc.ac.uk

- Castlelaw flock (from 2011)
- Objectives
 - Estimate genetic parameters of disease traits
 - Faecal Egg Counts (FEC), DAG scores
 - Assess relationship with productivity (e.g. live weight)
 - Assess relationship between disease traits and immune function
 - Develop a faecal resistant line reduced FEC and improved productivity

Traits		
FEC _s	FEC Strongyles	
FEC _N	FEC Nematodirus	
FEC _c	FEC Coccidia	
LWT	Live weight	
DAG	Faecal soiling (Dag) score	

Disease traits – Scottish Blackface

- Heritabilities
 - FEC, DAG and LWT
- Immunological traits
 - All heritable
 - Range of 0.14 to 0.77
- Faecal line of sheep proving successful in reducing FEC whilst maintaining/improving productivity

Trait	h ²	s.e.
FEC _S	0.15	0.03
FEC_N	0.17	0.03
FEC_C	0.09	0.02
DAG	0.09	0.03
LWT	0.33	0.04

5 point dag score

0

1

9

.

Disease traits – Scottish Blackface

- Selection for reduced FEC is working
- Genetic correlations between different parasites are favourable
 - meaning that genetic selection for low FECs is possible, and will not affect productivity.
- Genetic correlation between DAG and live weight is antagonistic.
 - DAG score being an indicator of previous infection, we can work with this correlation in order to reduce the impact of infections on productivity.

Behavioural signatures of parasitism

Alex.Morris@sruc.ac.uk

Aims

 to investigate whether changes in grazing behaviour can be an indicator of parasite infection (*Teladorsagia circumcincta*).

Trial set-up (9 weeks)

Group	Treatment	
Parasitised	all lambs infected with parasitic nematode, n=20	
Partial Parasitised	a proportion of lambs were infected with nematodes, n=20	
Control	all lambs remain parasite free, n=20	

Behavioural signatures of parasitism

Lamb behaviour

- Monitored continuously using proximity loggers and activity monitors.
- Frequency and duration of social contacts between lambs recorded.
- Activity levels of each lamb measured.

Analysis

- Data collection just finishing.
- Data will be analysed to identify if any changes in behaviour and/or activity can be linked to level of parasite infection.

Additional behaviour work

Marie.Haskell@sruc.ac.uk

- Pen enrichment (e.g. mirrors, extra food, extra space, hay bales etc.) – Positive effects
- Emotional contagion the phenomenon of having one person's emotions and related behaviours directly trigger similar emotions and behaviours in other people
- Stress levels measured using heart rate monitors
- Relevance to sheep housing, handling ease & welfare

Mastitis & Footrot

Texel society member flocks

Ann.McLaren@sruc.ac.uk

- Aims
- identify suitable phenotypes for mastitis
- collect genotype information
- genomic EBVs for mastitis and footrot
- Data collected on farm
 - Udder & Teat measurements
 - California Mastitis Test
 - Foot scores
 - DNA samples

Mastitis & Footrot Phenotypes

- California Mastitis Test (h² = 0.10)
 - Good predictor of Somatic Cell Count ©

• Foot Scores ($h^2 = 0.18$)

CMT and lamb live weights

Difference between a ewe scored 0 and scored 8:

- 3.84 kg average lamb live weight reared
- £6.30 a lamb (based on a current live weight price of £1.64 per kilo)

Genomic breeding values (GEBVs)

Karolina.Kaseja@sruc.ac.uk

GEBVs produced for both mastitis and footrot

Taste –vs- Waste (2014-2019)

Nicola.Lambe@sruc.ac.uk

Breeding for more taste and less waste n ~ 5000 Mated to Mule ewes crossbred Terminal sire rams lambs CTscanned eAbattoir EBVs based on meat and carcass quality of crossbred lambs NIR Loin info SRUC/EGENES Carcass info

Taste –vs- Waste: Key Findings

- Lamb intramuscular fat (IMF) linked to eating quality
- NIR and CT of lamb loin cuts can predict IMF with modhigh accuracy
- IMF predictors heritable in crossbred lambs:
 - NIR-IMF = 29%; CT-IMF = 21%

Taste –vs- Waste: Key Findings

- NIR predicted IMF as preferred option:
 - more practical to implement in abattoir
 - independent of FAT class
 - strong correlations with various IMF lab tests
 - high genetic correlation with lab-extracted
 IMF (0.9)
- Scope within breeding programmes to:
 - maintain IMF for improved eating quality
 - increase lean, decrease total fat, to improve carcass quality and reduce waste in commercial slaughter lambs

"VIA Project" (2017-2020)

 Carcass trait phenotype feedback for genomic selection in sheep

- Outputs target improved meat production and animal health
- Novel phenotype collection
 - Carcass merit (VIA scanned) ~3400 lambs
 from ~80 sires
 - Animal health
 - Health data for MHS traits ~3400 lambs from ~80 sires
 - Mastitis and footrot ~ 2000 ewes

VIA Project – Progress to date

- New VIA traits validated against CT scanning
 - Weights of fat, lean meat and bone in:
 - Total Carcass
 - Shoulder Primal Cut
 - Saddle Primal Cut
 - Hind-Leg Primal Cut
- Preliminary EBVs for growth carcass traits have been produced
- Genotypes collected

CT scanning

- CT scanning detailed carcass trait measurements without slaughter
- CT lean, CT fat, CT muscularity since late 90s

Very accurate prediction of muscle, fat depots, bone etc.

M: $R^2 = 0.98$

F: $R^2 = 0.99$

B: $R^2 = 0.89$

Research proven new CT traits

Meat quality (IMF)

Spine traits

Loin muscularity

Developing novel CT traits

- Lambing ease predictors
 - Shoulder width
 - Hip width
 - Pelvic dimensions / angle
 - in sires??

- Methane predictors
 - Reticulo-rumen volume.... under genetic control?

Feed intake recording

First results – Blackface finishers

Harriet.Wishart@sruc.ac.uk

Roughage and concentrate intake varies between animals.

Grass to Gas (2019-2022)

Nicola.Lambe@sruc.ac.uk

 Strategies to mitigate GHG emissions from pasturebased sheep systems

Objectives:

- Validate predictors of feed intake and feed efficiency
- Determine the relationships between:
 - indoor vs outdoor (grazing) FE
 - indoors vs outdoors methane production
 - FE vs methane production indoors and outdoors
- Investigate genetic and genomic (animal and microbiome) strategies to reduce methane emissions in pasture-based sheep systems
- Quantify economic and environmental benefits of more feed-efficient, and lower GHG-emitting sheep
- Deliver applied, sustainable solutions to reduce methane emissions from sheep

European Projects

Georgios.Banos@sruc.ac.uk
 Joanne.Conington@sruc.ac.uk

Joanne.Conington@sruc.ac.uk & Sebastian.Mucha@sruc.ac.uk

SusSheP

Claire.Morgan-Davies@sruc.ac.uk & Nicola.Lambe@sruc.ac.uk

SheepNet

Claire.Morgan-Davies@sruc.ac.ukCathy.Dwyer@sruc.ac.uk

Acknowledgements

- Commercial farmers involved in data collection
- All SRUC technical and farm staff involved in data collection

Innovate UK

