

SMAll RuminanTs breeding for Efficiency and Resilience

SMARTER – Which novel traits to improve feed efficiency?

*F. Tortereau*¹, *C. Marie-Etancelin*¹, *P. Frutos*², *J. Conington*³, *G. Arsenos*⁴, *I. De Barbieri*⁵, *J. H. Jakobsen*⁶, *C. Moreno-Romieux*¹, *J.J. Arranz*²

- ¹: INRAE, INPT-ENVT, INPT-ENSAT, GenPhySE Castanet-Tolosan, France
- ²: University of Leon & CSIC, Leon, Spain
- ³: SRUC, Edinburgh, Scotland
- ⁴: AUTH, Thessaloniki, Greece
- ⁵: INIA, Montevideo, Uruguay
- ⁶: Norwegian Association of Sheep and Goat Breeders, Norway

Why to improve feed efficiency?

1/3 of proteins ingested by human comes from livestock

Ruminants are the only ones able to transform the ingested fibres into food edible by humans.

Livestock production

Human population is increasing \rightarrow higher demand in animal proteins

Livestock production has to increase BUT some limits have to be set on

- the proportion of crop dedicated to livestock (feed-food competition)
- environmental impacts of livestock production (GHG emissions, soil pollution,...)

> How to estimate feed efficiency?

Loss estimates

- Metabolic crates (urine and faeces)
- GHG emissions
- Activity

INRAØ

SMARTER – Which novel traits to improve feed efficiency? 2021 ICAR - Leeuwarden

Feed intake

- Individual trough
- Automatic feeders
- Metabolic crates

Maintenance

Body weight

Production

- Milk, fat and protein yields
- Average daily gain
- Body composition (ultrasound, CT scan,...)

> How to improve feed efficiency ?

Feeding strategies

Selection : FCR and RFI are heritable traits.

Species	Breeds	h² RFI	h² FCR	references	protocols
Meat sheep	Targhee	0.26 ± 0.07		Snowder and Van Velck, 2003	Post-weaning period
	Composite population (Columbia, Hampshire, Suffolk)	0.11 ± 0.05		Cammack et al., 2005	Post-weaning period
	Merino (from post-weaning to adult)	From 0.07 to 0.29 (± 0.08)		Paganoni et al., 2017	Post-weaning, hoggets and adults
	New Zealand maternal breed	0.46 ± 0.13		Johnson et al., 2018	Post-weaning period under a concentrate diet
	Romane	0.45 ± 0.08	0.30 ± 0.08	Tortereau et al., 2020	Post-weaning period
Dairy sheep					
Dairy goats	mixed-breed (Saanen, Alpine, and Toggenburg)			Desire et al., 2017 (feed intake : h ² ~0.25)	

INRAØ

SMARTER – Which novel traits to improve feed efficiency? 2021 ICAR - Leeuwarden

How to improve feed efficiency? >

Forage and concentrate automatic feeders

2021 ICAR - Leeuwarden

> Which novel traits for feed efficiency improvement?

These new traits must be relevant, easy to measure and cheap enough to be used in a large number of animals.

Non-invasive traits

- body weights
- body composition (ultrasound)
- body condition score

- body measurements (chest width, depth)

- milk yield and composition
- gas emissions (CH₄, CO₂)

From milk samples:

- MIR spectra

From faecal samples:

- NIR spectra

INRAØ

SMARTER – Which novel traits to improve feed efficiency? 2021 ICAR - Leeuwarden

Total or partial feed intake

- body composition (CT-scan)

Breeding and feeding practices Health status Climatic data indoor /outdoor (T°C, humidity,...)

Invasive traits

From blood samples:

- genotypes
- metabolites (targeted or untargeted)

From rumen samples:

- microbiota
- metabolites
- fatty acids

In italics are traits that can be considered for research purposes only

First results – dairy sheep

In Greece **(AUTH)** – 1st records of targeted metabolites N=30 dairy ewes from 4 breeds Lacaune, Assaf, Chios and Frizarta

Objective = identification of body composition traits (US) as potential predictors of energy balance.

Negative energy balance status $\rightarrow \beta$ -HB ≥ 0.8 mmol/L, NEFA ≥ 0.3 or 0.7 mmol/L

Blood biochemical analysis (= targeted analyses)

- Beta-hydroxy-butyrate
- Non-esterified fatty acids
- TP
- Albumin
- BUN

In Spain (UniLéon) – 1st records of feed intake, ~1 year after nutritional challenge N=40 dairy ewes (breed = Assaf)

Objective = determine the effects of a severe protein restriction of ewe replacement lambs during their pre-puberal stage on their feed efficiency in their adult life (as dairy ewes).

High variability in voluntary feed intake among ewes

SMARTER – Which novel traits to improve feed efficiency? 2021 ICAR - Leeuwarden

> First results – dairy goats

INRA

In France (INRAE) : 1st records of feed intake (concentrate) on goats divergently selected on longevity

ightarrow additional information on feeding behaviour

	SE	
LGV-/LGV+ LGV- LGV+ LGV+	LGV+	
Nb visits / day 18 / 29 15.8 17.4 4.1	7.3	
Intake per visit (kg) 18 / 29 0.05 0.01	0.01	
Intake per day (kg) 18 / 29 0.64 0.63 0.12	0.14	
Intake duration per day (s) 18 / 29 551 678 170	508	
Intake speed per day (kg/hrs) 18 / 29 4.72 4.40 0.75	1.24	

Brevet N° FR2998135 Automatic feeders developped at INRAE

In Scotland (SRUC)

Model:-Yield-adjusted feed intake (+ year-season, age at kidding, herd test day, and fixed lactation curves using third order polynomials nested within lactation number)

42,434 feed intake records 3,421 animals

> First results – meat sheep

In France (INRAE) : divergent selection on residual feed intake

Phenotypic results for lambs fed *ad libitum* with concentrate, in the 3rd generation of selection (2019 and 2020):

	RFI+ (n=79)	RFI- (n=90)	P-value	
Average daily feed intake (g/d)	2111 ± 240	1916 ± 195	<0.0001	Δ ADFI= 195 g/d Δ RFI= 1.9 σ_g Due to the 2020 serie mainly
RFI (g/d)	75 ± 130	-66 ± 117	<0.0001	
End-test Backfat thickness (mm)	5.76 ± 0.97	5.76 ± 0.91	0.73	
End-test Muscle depth (cm)	2.81 ± 0.24	2.76 ± 0.20	0.34	
End-test Body weight (kg)	55.16 ± 6.23	53.41 ± 5.43	0.0003	
ADG (g/d)	334 ± 64	327 ± 60	0.03	

Differences observed on :

- plasmatic amino acids
- microbiota composition

INRAØ

SMARTER – Which novel traits to improve feed efficiency? 2021 ICAR - Leeuwarden

In Norway (NSG) : first records of GHG emissions , and estimations of genetic parameters

Single trait animal model 1,624 phenotyped animals ; 16,092 animals in pedigree

Fixed class effect : flock*group, age Fixed regressions : Live weight ¹, minutes since off feed ¹ Regression on weight included for traits 1, 2, 4 and 5.

Trait	Heritability
1) gram CH ₄ per hour	0.181
2) gram CO ₂ per hour	0.455
3) gram CH_4 per hour / kg live weight	0.141
4) gram CH ₄ per hour / gram CO ₂ per hour	0.263
5) gram CH_4 per hour / (gram CH_4 per hour + gram CO_2 per hour)	0.262
6) Live weight	0.317

> Conclusions

Many fine phenotypes collected in experimental farms to :

- dissect the biology underlying feed efficiency
- identify **proxies** of feed intake/feed efficiency

Use these proxies in larger populations (commercial populations) to

- Estimate genetic parameters
- Estimate the feasability of a routine collection of these new traits
- Include feed efficiency in selection programs

SMARTER PARTNERS

Thank you for your attention

www.smarterproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°772787

SMARTER – Which novel traits to improve feed efficiency? 2021 ICAR - Leeuwarden