

Single-step genetic evaluation of resistance to parasites in the Swiss Alpine goat population

Adrien M. Butty, Felix Heckendorn, Mirjam Spengeler, Franz R. Seefried, and Beat Bapst

30.8.2021

EAAP Davos

Resistance to parasites

- Gastrointestinal nematodes are source of one of the most important disease in small ruminants in pasture-based production system.
- After decades of the use of anthelminic products, parasites developed resistances.
- As alternative to anthelminic product, breeding for more resistant animals was proposed in sheep and goats

Previous study

Parasite 2017, **24**, 32

© F. Heckendorn et al., published by EDP Sciences, 2017

DOI: 10.1051/parasite/2017033

RESEARCH ARTICLE

OPEN 3 ACCESS

The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes

Felix Heckendorn^{1,*}, Anna Bieber¹, Steffen Werne¹, Anastasios Saratsis², Veronika Maurer¹, and Chris Stricker³

Received 19 December 2016, Accepted 14 July 2017, Published online 9 August 2017

¹ Research Institute for Organic Agriculture (FiBL), PO Box, CH-5070 Frick, Switzerland

² Laboratory of Parasitology, Veterinary Research Institute, Hellenic Agricultural Organization Demeter, Thermi, 57001 Thessaloniki, Greece

³ agn Genetics GmbH, Börtjistrasse 8b, 7260 Davos, Switzerland

Phenotypes

- Measures of fecal egg count (FEC), packed cell volume (PCV) and FAMACHA© eye color score (FAA).
 - 948 Alpine goats in 17 Swiss herds
- Higher parasitic load leads to:
 - higher fecal egg count
 - lower percentage of packed cell volume, and
 - whiter FAMACHA© eye color score.
- All traits used together could build a resistance index

Dataset

- Pedigree contained 5652 animals
 - Of which 1277 were genotyped (60K Goat Chip V2)
- Heritability estimates, genetic (above diag) and phenotypic (below diag) correlations:

	FEC	FAA	PCV
FEC	0.07	-0.03	-0.39
FAA	0.18	0.22	-0.60
PCV	-0.27	-0.17	0.22

Phenotyping

- Two measures
 - Early summer (after 3-4 months on pasture)
 - Early autumn (3-4 months after helminthic treatment)
- FEC transformed to obtain normal distribution:
 FEC_t = (FEC + 1)^{0.36}
- FEC reduction test (FECRT) done to account for level of resistance in each herd

Multi-traits animal model

 FEC_t = season + anthelmintic + FECRT + age class + herd + pe + a + e

FAA = season + anthelmintic + FECRT + age class + classifier + herd + pe + a + e

PCV = season + anthelmintic + FECRT + age class + herd + pe + a + e

Reproduction of PBLUP by Heckendorn et al.

- Differences expected:
 - Multibreed vs only Alpine
 - Different pedigrees
 2012 vs 2021
 - Different evaluation software aireml90 vs MiX99 suite

BUT

- Same variance components
- Same phenotypic dataset

Reliabilities of non-genomic breeding values

- Reliability distribution similar for all three traits
- Averages are very low:

• FAA: 0.164

• FEC: 0.096

• PCV: 0.156

Reliabilities of non-genomic breeding values

 Reliability distribution similar for all three traits

Averages are very low:

• FAA: 0.164

• FEC: 0.096

• PCV: 0.156

From P-BLUP to ssGBLUP

- 16% of the animals in evaluation were phenotyped and genotyped
- No clear EBV difference between genotyped and nongenotyped animals
- High correlation between PBLUP and ssGBLUP

==> Dataset still very small for traits with low heritability estimates

- Use pipeline differentiating genotyped and non-genotyped animals:
 - Estimate reliabilities for all animals without genomic information (P-BLUP)
 - Estimate genomic reliabilities for genotyped animals (SNP-BLUP)
 - Integrate additional genomic information into P-BLUP model
 - Estimate genomic reliabilities for non-genotyped animals

Approximate individual animal reliabilities in single-step genomic model

H. Ben Zaabza¹, M. Taskinen¹, T. Pitkänen¹, G.P. Aamand², E.A. Mäntysaari¹ and I. Strandén¹

¹Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland, ²NAV Nordic Cattle Genetic Evaluation, 8200 Aarhus, Denmark; hafedh.benzaabza@luke.fi

- Use pipeline differentiating genotyped and non-genotyped animals:
 - Estimate reliabilities for all animals without genomic information (P-BLUP)
 - Estimate genomic reliabilities for genotyped animals (SNP-BLUP)
 - Integrate additional genomic information into P-BLUP model
 - Estimate genomic reliabilities for non-genotyped animals

Approximate individual animal reliabilities in single-step genomic model

H. Ben Zaabza¹, M. Taskinen¹, T. Pitkänen¹, G.P. Aamand², E.A. Mäntysaari¹ and I. Strandén¹

¹Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland, ²NAV Nordic Cattle Genetic Evaluation, 8200 Aarhus, Denmark; hafedh.benzaabza@luke.fi

Buck of 87 animals in pedigree, of which 79 are genotyped.

Buck of 25 animals in pedigree, of which 17 are genotyped.

Conclusions

- Reproduction of the work by Heckendorn et al. was possible with MiX99 and additional pedigree information
 - EBV correlations of 0.94
 - Reliability estimates were still very low
- Change from PBLUP to ssGBLUP approach did not show any great impact on EBV for any genotyped or non-genotyped animals
- Reliability estimates are increased with additional genomic information, but data must be further expanded before any possible implementation.

Acknowledgements

FiBL

Berner Fachhochschule

b UNIVERSITÄT BERN

Thank you for your attention

[©]FiBL