Breeding for Sheep parasite resistance in extensive production systems: from phenotype to genotype

Marques, C.B.; Navajas, E.A.; Peraza, P.; Carracelas, B.; Vera, B., <u>Gabriel Ciappesoni</u>

International Symposium on Sustainable Animal Production and Health – Current Status and Way Forward (CN-281) (Virtual Event) 28 June – 2 July

Introduction

- Worldwide (as in Uruguay), gastrointestinal parasites (GIP) generate numerous productive and economic losses in sheep production
- The Uruguayan approach: Breeding of genetically resistant animals (EBV for Faecal Egg Count) within an integrated control of parasites. FEC evaluations from 1994 (SUL & INIA: www.geneticaovina.com.uy).

The strategy is based on three pillars:

Support for recording and new criteria

Number of animals with FEC records by year of birth

Breed	2014	2015	2016	2017
Corriedale	121	1079	1301	1451
Merino	726	1298	1400	1397
Total	882	2435	2796	3133

1

Total data in National database related to GIP resistance

2016	2017		Breed	Trait*	Ν	mean	sd
1301	1451			BCS at FEC	1394	2.74	0.6
1001			Corriedale	FAMACHA	3077	2.28	0.8
1400	1397			FEC	21772	1530.07	2319.66
2796	3133			PCV	2495	35.27	4.75
*FEC: Fecal egg count post weaning. PCV: Packed cell volume. BCS: Body condition score		Merino	BCS at FEC	230	2.81	0.39	
			FAMACHA	1590	2.11	0.85	
			FEC	25700	1279.08	1967.7	
			PCV	1356	32.05	5.41	

Support for recording and new criteria

FEC heritability and genetic correlation with production traits

✓ 0.15±0.01 Merino (Ciappesoni et al. 2013)

✓ 0.21±0.02 Corriedale (Castells, 2009)

Trait	Log FEC
GFW	-0.03 (0.04)
CFW	[-0.11; 0.06] 0.02 (0.05)
FD	-0.18(0.03) [-0.23; -0.12]
CVFD	0.18 (0.04) [0.10;
SL	-0.14 (0.04)
CF30	0.01 (0.03)
WWI	-0.06 (0.06)
YWI	-0.23 (0.04) [-0.30; -0.15]

Trait	Body Weight	log _e FEC	FAMACHA®	PCV	BCS
Body Weight	0.33 (0.03)	-0.04 (0.07)	-0.08 (0.22)	0.58 (0.12)	0.20 (0.17)
	[0.28; 0.39]	[-0.17; 0.096]	[-0.52; 0.37]	[0.33; 0.81]	[-0.13; 0.55]
log _e FEC	-0.05 (0.02)	0.19 (0.02)	0.30 (0.16)	-0.36 (0.11)	0.38 (0.14)
	[-0.09; -0.02]	[0.15; 0.22]	[-0.015; 0.63]	[-0.57; -0.14]	[0.10; 0.65]
FAMACHA®	-0.10 (0.046)	0.062 (0.03)	0.11 (0.04)	-0.26 (0.21)	0.002 (0.23)
	[-0.19; -0.01]	[0.006; 0.12]	[0.04; 0.19]	[-0.66; 0.15]	[-0.44; 0.46]
PCV	-0.071 (0.052)	-0.22 (0.03)	-0.24 (0.04)	0.22 (0.05)	0.67 (0.095)
	[-0.18; 0.03]	[-0.28; -0.15]	[-0.31; -0.17]	[0.12; 0,33]	[0.46; 0.84]
BCS	0.33 (0.044)	-0.14 (0.04)	-0.26 (0.04)	0.13 (0.09)	0.14 (0.04)
	[0.24; 0.42]	[-0.22; -0.065]	[-0.35; 0.19]	[-0.04; 0.30]	[0.074; 0.22]

	log _e FEC low	log, FEC high	BW low	BW high
	0.15 (0.02)	0.99 (0.004)	0.01 (0.10)	0.03 (0.09)
loge FEC low	[0.12; 0.18]	[0.98; 0.99]	[-0.19; 0.20]	[-0.16; 0.21]
log _e FEC _{high}		0.22 (0.02)	-0.05 (0.10)	-0.11 (0.09)
		[0.18; 0.27]	[-0.25; 0.14]	[-0.29: 0.07]
BW low	-0.04 (-0.03)		0.38 (0.05)	0.79 (0.07)
	[-0.10; 0.01]		[0.29; 0.46]	[0.65; 0.93]
BW _{high}		-0.01 (0.03)		0.35 (0.04)
		[-0.08; 0.05]		[0.27; 0.44]

Ciappesoni, et al. 2019.

1

Generation of resistance selection nucleus

2

divergent selection lines by FEC EBV (since 2000, SUL Cerro Colorado)

Corriedale: selection by FEC EBV and production (since 2017 INIA Glencoe)

Merino: selection by FEC EBV and production (since 2015 FAgro-Udelar - San Antonio)

SMARTER: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement n°772787 SNP panels: 50K, 15K

Building the sheep of the future

gciappesoni@inia.org.uy

