

The rumen microbiota is modified in lambs divergently selected for residual feed intake

Q. Le Graverand, A. Meynadier, C. Marie-Etancelin, D. Marcon, F. Tortereau

Introduction

Feed efficiency is a key trait in animal farming and breeding

- Residual Feed Intake (RFI; Koch et al., 1963): one feed efficiency criterion
- Heritable trait: 0.11-0.45 (Snowder & Van Vleck, 2003; Cammack et al., 2005;
 Tortereau et al., 2020)

The promises of the rumen microbiome as a biomarker/predictor for the RFI

- Biomarkers for RFI of beef cattle (Clemmons et al., 2019)
- Proxies of ewe lambs RFI with a forage based-diet (Ellison et al., 2019)
- Biomarkers of lambs RFI with a concentrate based-diet (Zhang et al., 2021)

RFI* divergent lines

*RFI = Daily Feed Intake – [$\mu + \beta_A x$ Daily Weight Gain + $\beta_B x$ Body Weight^{0.75} + $\beta_M x$ Muscle + $\beta_F x$ Fat]

RFI - : most efficient

RFI+: least efficient

Mean RFI (by generation and line) $\mu_{RFI-} = -81.3 g/day$

 $\mu_{RFI+} = 49.9 \ g/day$

 $\Delta pprox 0.9 \ \sigma_p$

 $\mu_{RFI-} = -69.6 \ g/day$ $\mu_{RFI+} = 78.1 \ g/day$

 $\Delta pprox$ 1.0 σ_p

Experimental design

277 Romane male lambs raised between 2018 and 2020 (i.e. G2 and G3)

Operational Taxonomic Units

1 16S and 18S sequences processing and clustering (Frogs pipeline, Escudié et al. 2018)

Data is not rarefied

2 Filters:

Relative abundances (<0.005%, Bokulich *et al.* 2013)

Prevalence (<2 animals)

16S sequencing

Bacteria + Archaea

994 retained OTUs

18S sequencing

Protozoa (+ Fungi)

213 retained OTUs

Discriminant analysis

1 16S and 18S sequences processing and clustering↓2 Filters

Compositional approach, see Martinez Boggio et al. (2021)

3 Zero imputationGeometric Bayesian Multiplicative replacement (GBM)

- 4 Transformation
 Centered LogRatio (CLR)
- 5 Linear models
 To adjust abundances for the age and technical or
 environmental effects
 - 6 Discriminant analysis
 Sparse Partial Least Squares Discriminant
 Analysis (sPLS-DA)

Cross-validation strategy to tune and assess the model

Discriminant analysis with RFI lines

Balanced Error Rate (BER): average of the prediction errors on each class

Discriminant analysis with other traits

The RFI line status of a lamb: • is inherited from its sire

may not completely be consistent with RFI EBVs

	RFI EBVs*		
Line	EBV- EBV+		
RFI- line	129	7	
RFI+ line	9	131	

*EBVs : Estimated breeding values

Discriminant analysis with other traits

The RFI line status of a lamb: \Rightarrow is inherited from its sire

may not completely be consistent with RFI EBVs

	RFI EBVs*		Phenotypic ¹ RFI		Phenotypic ² ADFI	
Line	EBV-	EBV+	RFI-	RFI+	ADFI-	ADFI+
RFI- line	129	7	95	41	95	41
RFI+ line	9	131	43	97	43	98

*EBVs : Estimated breeding values

is even less consistent with the animal phenotypes

¹Adjusted for the pen; ²Adjusted for the pen, year, and age

Thus, would it be more accurate to discriminate animals based on these traits?

Discriminant analysis with other traits (16S data)

Comparison of sPLS-DA balanced error rates

Technique	Line	RFI EBVs	Phenotypic RFI	Phenotypic ADFI
16S	45.1%	41.0%	42.1%	38.3%

Most contributing OTUs to the ADFI discriminant analysis (16S)

OTU	Phyla	Genus	Prevalence* (%)	Higher abundance
1	Firmicutes	Saccharofermentans	44.8	ADFI+
2	Firmicutes	Ruminococcaceae UCG 004	91.7	ADFI+
3	Firmicutes	Lachnospiraceae NK3A20 gr.	52.3	ADFI+
4	Bacteroidetes	(Rikenellaceae) U29 B03	25.2	ADFI+

^{*}Fraction of the animals for which the OTU was detected

Discriminant analysis with other traits (185 data)

Comparison of sPLS-DA balanced error rates

Technique	Line	RFI EBVs	Phenotypic RFI	Phenotypic ADFI
185	45.9%	48.5%	39.6%	43.2%

Most contributing OTUs to the RFI discriminant analysis (18S)

ОТИ	Phyla	Genus	Prevalence* (%)	Higher abundance
1	Ciliophora	Metadinium	10.0	RFI+
2	Ciliophora	Metadinium	25.3	RFI+
3	Ciliophora	Entodinium	21.2	RFI+
4	Ciliophora	Entodinium	2.7	RFI+

^{*}Prevalence: fraction of the animals for which the OTU was detected

Differential analysis

Discriminant analysis: Identifying biomarkers characterizing the groups

Differential analysis: Identifying significantly and differentially abundant OTUs

Differential analysis

Genera of significant OTUs (adjusted p-value < 0.05)

Silva 132 16S & Silva 138.1 18S reference databases (Yilmaz et al., 2014)

Some of the most discriminating OTUs are also significantly differentially abundant.

Conclusion

Ruminal microbiota is not informative enough to discriminate lambs from RFI divergent lines

Ruminal microbiota might not be significantly modified by the selection

Strong environmental / sequencing effects

Might be difficult to find RFI proxies with the ruminal microbiota

Perspectives

Data integration to predict the feed efficiency (microbiome, genome, metabolome, NIRS...)

Relationships between the rumen microbiome and other traits will be assessed:

Growth performances

Body composition

Greenhouse gases emissions

With the RFI divergent lines

Questions and exchanges

