CAN METAFOUNDERS IMPROVE INBREEDING ESTIMATION?

Z.G. Vitezica¹, I. Aguilar², J.M. Astruc³, A. Legarra¹

¹ INRA/INPT, UMR1388 GenPhySE, Toulouse, France,
² INIA, 11100, Montevideo, Uruguay
³ IDELE, 31321, Toulouse, France.

Motivation

- In sheep natural mating is (usually) not recorded
 - Only AI offspring has known parents
- This incomplete pedigree information underestimates inbreeding
- Metafounders: pseudo-animals that represent relationship across and within base populations

$$\mathbf{\Gamma} = \begin{pmatrix} \gamma_{11} & \gamma_{12} & \\ & \gamma_{22} & \\ & & \dots \end{pmatrix}$$

Ancestral relationships in matrix Γ

 Unknown parents of an animal born in 2000 are offspring of animals born in 1996, but this relationship is lost if metafounders are not used

Inbreeding with metafounders

$$\mathbf{\Gamma} = \begin{pmatrix} \gamma_{2012,2012} & \gamma_{2012,2014} \\ & \gamma_{2014,2014} \end{pmatrix} = \begin{pmatrix} 0.20 & 0.04 \\ & 0.10 \end{pmatrix}$$

By repeated application of the Tabular Method

- "Lucy" born in 2012 with unknown parents has F=0.1
- "Sean" born in 2014 with unknown parents has F=0.05
- Relationship of Sean and Lucy is 0.04
- "Paul" offspring of Sean and Lucy has inbreeding 0.02
- This shows that we compensate for missing pedigrees

Objective & data

 To compare different methods to estimate inbreeding depression in semen traits

Trait	Mean (SD)
Sperm volume (ml)	1.41 (0.63)
Sperm concentration (10 ⁶ /ml)	3.23 (0.64)
Motility score	4.61 (0.54)

- 16,196 phenotypic records for 620 rams
- 533 of them genotyped (36,464 SNPs)
- 8,266 animals in pedigree (rams + ancestors)

Inbreeding depression analysis

* For the subset of 533 genotyped rams

Estimated inbreeding depression

Models	Semen traits ¹			Estimate (s.e.)
	Volume	Concentration	Motility	
PED	-0.096 (0.880)	1.104 (0.978)	-1.241 (0.681)	
PED _{non-zero}	-0.290 (0.996)	1.056 (1.108)	-1.259 (0.771)	
PED _{MF}	-0.979 (1.006)	1.617 (1.103)	-1.676 (0.768)	
H_{MF}	-0.248 (0.703)	0.545 (0.807)	-1.115 (0.557)	
ROH	-0.931 (0.609)	-0.247 (0.684)	-0.905 (0.413)	

A 10% increase in inbreeding resulted in a reduction in motility of around 0.1 points in the scale (from 1 to 5) and a small deterioration in male fertility

Values are expressed as the change in phenotypic mean per 100% increase in inbreeding (SE are in parenthesis).

Conclusions

- Metafounders help with missing pedigree information
- Inbreeding depression estimation was more accurate using metafounders
- Analyses with ROH confirm these results
- Motility was unfavorably impacted by the increase of inbreeding in Basco-Béarnaise breed

Project partially supported by the Genotoul bioinformatics platform Toulouse Midi-Pyrenees.

Thanks for your attention!