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• Evaluations are unbiased on average but with random variations
across years: don’t trust a single check of your evaluations

• With Unknown Parent Groups:
• BLUP unbiased
• Some SSGBLUP methods are biased
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Why should I look at dairy sheep?

• Dairy sheep milk is a drop in an ocean of cow milk
• But we, dairy sheep geneticists, can do things that dairy cattle 

geneticists can not J
• Simpler selection schemes
• No import/export of animals, no Interbull
• Human-size data sets (in the few millions of records)
• Can try things quickly

• Some of our results might be of interest for the whole community of 
dairy geneticists
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• Progeny testing , Artificial Insemination (AI)
• Steady genetic progress ~0.2𝜎!/𝑦𝑒𝑎𝑟
• 35 years of pedigree and records

– 60,000 records / year
– 15,000 females / year
– 200 elite (AI) males / year 

• Genomic selection started in 2018
• We don’t want overestimation of young animals’ GEBVs (bias)

• All rams have very complete pedigrees, but
• 20% ewes have missing sires in pedigree due to Natural Mating

– These unknown Natural Mating sires are actually offspring of AI rams
– Use of Unknown Parent Groups in BLUP to model genetic trend
– unclear how to include missing pedigrees in SSGBLUP

Manech Tete Rousse breeding program
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• Do we have bias in genetic (genomic) evaluations? 
• How to best model missing pedigrees?

• The time-honored method to check bias is time-point truncation 
(Mantysaari et al., 2010, Olson et al., 2011)

• We want to check bias across multiple truncation time points
– we don’t want to use DYDs as we have small progeny groups: method LR 

• Should we use… 
– 13 Unknown Parent Groups (fixed) 

• or 
– 13 Metafounders (random with relationships)

Objectives

the predictions are inflated, and the differences in estimated
genetic merit of the test individuals are biased upwards
compared to their future performance. For the validation
bulls, the b1 coefficients were always lower than the
expected value, indicating that GEBV exaggerated differ-
ences between bulls (Table 4). Moreover, b1 coefficients
were even lower with the ssGBLUP evaluation that
included genomic information of the culled bulls. A similar
trend was observed also in the cow validation (Table 5).

The bull validations were also conducted with 2 years of
data reduction (like in cows). With this validation, we had
256 validation bulls, and the validation reliabilities from
the ssGBLUP were higher compared to the validation with
4 years of data (Table 4B). Thus, it was clear that more
genotyped cows in the reference population improved the
validation of bulls. Still, the difference between the two
ssGBLUP evaluations remained: the b1 values were a bit
higher with GEBVexc,R than with GEBVinc,R.
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FIGURE 1 Trends for protein (G)EBVs by birth year using different genomic and pedigree information for genotyped reference bulls (solid
lines) and young test bulls selected for AI (dashed lines). EBVs and GEBVs are expressed as standardized breeding values with SD of 10 units
for bulls born between the years 2005 and 2007. GEBVinc stands for analyses including and GEBVexc excluding genomic information of the
culled bull calves in ssGBLUP. For the test bulls, EBV stands for parent average (PA)
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FIGURE 2 SD for protein (G)EBVs (kg) by birth year using different genomic and pedigree information for genotyped reference bulls
(solid lines) and young test bulls selected for AI (dashed lines). GEBVinc stands for analyses including and GEBVexc excluding genomic
information of the culled bull calves in ssGBLUP. For the test bulls, EBV stands for parent average (PA)
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• 2 M records of milk yield in the complete data set
• 500,000 animals in pedigree
• 3,000 genotyped AI males (all progeny-tested males since 2000) 

with the 50K Illumina ovine chip

• (SSG)BLUP evaluations for milk yield 
– animal model with repeated records and correction for heterogeneity of 

variances (Meuwissen et al., 1996)

• Software heterf90, blup90iod2 (Misztal et al.)

Data & records



Method LR in a nutshell

• Define a “focal set” of “comparable” animals of interest
• e.g. contemporary young males born in 2010 or young females born in 2008

• Define evaluations “partial data” (early) and “whole data” (late). From “partial” to 
“whole”:

• Averages of EBVs should not change (i.e. some young animals will go up and some down)
• Dispersion of EBVs should increase by the right amount (more information -> more dispersion)

• Slope (EBVs_whole ~ EBVs_partial) should be 1

• Corr(EBVs_whole,EBVs_partial) is a function of respective accuracies
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Semi-parametric estimates of population 
accuracy and bias of predictions of breeding 
values and future phenotypes using the LR 
method
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Abstract 
Background: Cross-validation tools are used increasingly to validate and compare genetic evaluation methods but 
analytical properties of cross-validation methods are rarely described. There is also a lack of cross-validation tools for 
complex problems such as prediction of indirect effects (e.g. maternal effects) or for breeding schemes with small 
progeny group sizes.

Results: We derive the expected value of several quadratic forms by comparing genetic evaluations including 
“partial” and “whole” data. We propose statistics that compare genetic evaluations including “partial” and “whole” data 
based on differences in means, covariance, and correlation, and term the use of these statistics “method LR” (from 
linear regression). Contrary to common belief, the regression of true on estimated breeding values is (on expecta-
tion) lower than 1 for small or related validation sets, due to family structures. For validation sets that are sufficiently 
large, we show that these statistics yield estimators of bias, slope or dispersion, and population accuracy for estimated 
breeding values. Similar results hold for prediction of future phenotypes although we show that estimates of bias, 
slope or dispersion using prediction of future phenotypes are sensitive to incorrect heritabilities or precorrection for 
fixed effects. We present an example for a set of 2111 Brahman beef cattle for which, in repeated partitioning of the 
data into training and validation sets, there is very good agreement of statistics of method LR with prediction of future 
phenotypes.

Conclusions: Analytical properties of cross-validation measures are presented. We present a new method named LR 
for cross-validation that is automatic, easy to use, and which yields the quantities of interest. The method compares 
predictions based on partial and whole data, which results in estimates of accuracy and biases. Prediction of observed 
records may yield biased results due to precorrection or use of incorrect heritabilities.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Models for genetic evaluation are an oversimplification 
of reality that usually holds only in the short run and in 
closely-related populations. !eir properties are rarely 
well known, which can lead to unexpected results. For 
instance, initial applications of genomic predictions of 
breeding values (GEBV) in dairy cattle led to biases, with 
young “genomic” selected bulls with high GEBV being 

overpredicted, as verified by posterior progeny test-
ing [1–3]. As a result, further use of GEBV in the dairy 
industry required extensive cross-validation and a more 
formal analytical framework [4–6].

!e introduction of new methods for genetic or 
genomic evaluation raises the question of model choice 
(comparing across models) and model quality (features 
of a particular model). !us, we need tools to rank, 
understand and quantify the behavior of prediction 
models in an “animal breeding” context. !e need for 
these tools has dramatically increased with the imple-
mentation of genomic selection, given its built-in 
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ABSTRACT

Bias in genetic evaluations has been a constant con-
cern in animal genetics. The interest in this topic has 
increased in the last years, since many studies have 
detected overestimation (bias) in estimated breeding 
values (EBV). Detecting the existence of bias, and the 
realized accuracy of predictions, is therefore of impor-
tance, yet this is difficult when studying small data sets 
or breeds. In this study, we tested by simulation the 
recently presented method Linear Regression (LR) for 
estimation of bias, slope, and accuracy of pedigree 
EBV. The LR method computes statistics by compar-
ing EBV from a data set containing old, partial infor-
mation with EBV from a data set containing all infor-
mation (old and new, a whole data set) for the same 
individuals. The method proposes an estimator for bias 
∆p
!( ), an estimator of slope bp"( ), and 3 estimators re-

lated to accuracies: the ratio between accuracies ˆ ,,ρw p( )  

the reliability of the partial data set accp
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  We simulated a dairy scheme 

for low (0.10) and moderate (0.30) heritabilities. In 
both cases, we checked the behavior of the estimators 
for 3 scenarios: (1) when the evaluation model is the 
same as the model used to simulate the data; (2) when 
the evaluation model uses an incorrect heritability; and 
(3) when the data includes an environmental trend. For 
scenarios in which the evaluation model was correct, 
the LR method was capable of correctly estimating 
bias, slope, and accuracies, with better performance for 
higher heritability [i.e., corr b bp p, "( ) was 0.45 for h2 = 
0.10 and 0.59 for h2 = 0.30]. In cases of the use of incor-
rect heritabilities in the evaluation model, the bias was 
correctly estimated in direction but not in magnitude. 

In the same way, the magnitudes of bias and of slope 
were underestimated in scenarios with environmental 
trends in data, except for cases in which contemporary 
groups were random and greatly shrunken. In general, 
accuracies were well estimated in all scenarios. The LR 
method is capable of checking bias and accuracy in all 
cases, if the evaluation model is reasonably correct or 
robust, and its estimations are more precise with more 
information (e.g., high heritability). If the model uses 
an incorrect heritability or a hidden trend exists in the 
data, it is still possible to estimate the direction and 
existence of bias and slope but not always their magni-
tudes.
Key words: genetic evaluation, BLUP, bias, accuracy

INTRODUCTION

The study of bias has become more relevant in the 
last years, as several works have shown differences be-
tween the estimated genetic value of top young bulls at 
genomic prediction and after progeny results (Spelman 
et al., 2010; Sargolzaei et al., 2012). The most frequent-
ly used statistics to analyze bias in selection schemes 
are as follows: b u u0 = −ˆ  [the difference between the 
averages of estimated breeding values û (EBV) and 
true breeding values u (TBV)], associated with the 

genetic gain, and b
cov u u
var u1 =
( )
( )
, ˆ
ˆ

 (slope of the regression 

of TBV on EBV), related to the dispersion of the EBV. 
Values of b0 < 0 underestimate and b0 > 0 overestimate 
TBV. Similarly, values of b1 < 1 represent an overesti-
mation of selected animals. Both biases produce varia-
tion in the expected genetic gain, with implications at 
the moment of selection (Boichard et al., 1995; Män-
tysaari et al., 2010).

Studies in Lacaune sheep have shown overestimation 
of genetic gain (b0 > 0) as well as overdispersion (b1 < 
1) of the genomic estimated breeding values (GEBV), 
with more effect in those traits under important selec-
tion pressure (Astruc et al., 2014; Baloche et al., 2014). 
The origin of these biases is unknown, and they should 
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Application of method LR
Evaluations with data until 2005, until 2006 and so on until 2017.

We compare *within-model*
• (G)EBVs at birth of a set (~200)  of future AI males
• (G)EBVs of the same males in later evaluations (after having progeny). 

For example for males born in 2005, 11 pairs of evaluations were compared
• 2005 vs 2007 
• 2005 vs 2008
• ... 
• 2005 vs 2017

The same for males born in 2006, 2007 ... 2015
• 2006 vs 2008
• ... 
• 2015 vs 2017

Total of 66 comparisons that were then “averaged” using a pseudo-model
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Bias

!Δ! = $%𝑢!"#$%"& − $%𝑢'()&*
Expected value of 0 in absence of bias. 

Slope of the regression EBVw on EBVp

(𝑏! =
𝑐𝑜𝑣(%𝑢!"#$%"& , %𝑢'()&*)

𝑣𝑎𝑟(%𝑢!"#$%"&)
With a value of 1 in unbiased procedure.
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Models for UPG/metafounders

1. BLUP_MF (metafounders) 

𝐴 + ,- =
𝐴".%/,".%/
[+] 𝐴".%/,/3

+

𝐴/3,".%/
+ Γ

,-

2. BLUP_UPG 

𝐴∗ =
𝐴".%/,".%/,- −𝐴".%/,".%/,- 𝑄

−𝑄5𝐴".%/,".%/,- 𝑄5𝐴".%/,".%/,- 𝑄
3. ssGBLUP_EUPG ("exact"_UPG)

𝐻 6789: ,- = 𝐴∗ +
0 0 0
0 𝐺,- − 𝐴;;,- − 𝐺,- − 𝐴;;,- 𝑄;
0 −𝑄; 𝐺,- − 𝐴;;,- 𝑄; 𝐺,- − 𝐴;;,- 𝑄;

4. ssGBLUP_MF (metafounders)

𝐻 + ,- = 𝐴 + ,- +
0 0 0
0 𝐺<=,- − 𝐴;;

+ ,- 0
0 0 0

5. ssGBLUP_UPG

𝐻∗ = 𝐴∗ +
0 0 0
0 𝐺,- − 𝐴;;,- 0
0 0 0

Default blupf90

Legarra et al. 2015

Misztal et al. 2013
Matilainen et al 2018

Thompson 1979
Quaas 1988

Legarra et al. 2015

* Γ was computed by GLS from all genotypes



Results 1: more than one check

Use of method LR allows many, easy, systematic checks of bias 
• High variability due to year of birth (“partial”) and year of ”whole” evaluation
• We should use several comparisons to decide the rightness of the model
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On average 
there is no bias

BLUP_UPG

Year of birth 
2008 “inflated”

Year of birth 
2007 “deflated”

slope

Year of birth



Results 2: some methods are better

Some methods (SSGBLUP_Exact_UPG) look wrong even compared to 
themselves (they are incoherent from one year to the next ones)

10

On average 
there is bias

SSGBLUP_Exact_UPG

Year 2008 *very* 
“inflated”

slope

Year of birth



Results 3: all methods together
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• There is some small bias in the 
genetic trend of ~0.25𝜎9
• BLUPs are generally unbiased
• SSGBLUP more accurate than 

BLUP
• SSGBLUP is better with 

metafounders (less bias, more 
accurate)

Accuracies

* All estimators have s.e. <0.02

Model
!"#$ − !"#&
Bias

!"&~	!"$
Slope

)**$
)**&
+ )**$,	+ )**$,

)**&,
+

BLUP-MF 0.21 0.99 0.56 0.22 0.33

BLUP-UPG 0.36 0.97 0.55 0.24 0.31

SSGBLUP-EUPG 0.39 0.87 0.62 NA 0.44

SSGBLUP-MF 0.20 0.98 0.67 0.33 0.46

SSGBLUP-UPG 0.27 0.95 0.65 NA 0.44



Conclusions

• Run more than one test !!!
• Method LR allows quick and automatic checks

• *In our data set*, no bias if we do things correctly
• BLUP_UPG and BLUP_MF were unbiased
• SSGBLUP_MF was unbiased
• Good compatibility of marker and pedigree information while avoiding double 

counting
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Conclusions

• Run more than one test !!!
• Method LR allows quick and automatic checks

• *In our data set*, no bias if we do things correctly
• BLUP_UPG and BLUP_MF were unbiased
• SSGBLUP_MF was unbiased
• Good compatibility of marker and pedigree information while avoiding double 

counting
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Thank you for your attention
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Leftovers
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Bias due to genetic trend
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Consider a Genetic Evaluation

Year of 
birth

EB
V

Old animals
Good accuracy

Young animals
Bad accuracy

True Genetic gain

Selection rule

If the EBVs are biased, all 
young animals might be 

underestimated and we don’t 
select enough of themYoung animals EBVs 

should lie around the 
true genetic mean of 

their generation

Bias

No bias if 
E(TBV)=E(EBV)

Bias of the first kind (b0 in Interbull jargon)



Bias due to dispersion (slope)
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Bias of the second kind or “Slope” (b1 in Interbull jargon)

Consider a Genetic Evaluation

Year of birth

EB
V

Old animals
Good accuracy

Young animals
Bad accuracy

Dispersion
Selection rule

Young animals EBVs 
should have the right 

dispersion
Correct mean after

selection

If we have too much 
dispersion…

We select too many young 
animals as we think that 
they’re better than the 

truth

Good dispersion if 

reg(TBV~EBV)=1

True Genetic gain

Ideal situation



Checks for bias
• Traditional method
• Compare DYDs after daughters with (G)EBVs before daughters
• Not always possible:

• Small data sets: RFI, methane emissions, small populations (sheep & goat but also small 
breeds)

• Traits such as maternal ability in beef, carcass yield in pigs
• Hard to make automatic

• Hence method LR:
• comparison of old EBVs ('𝑢:) with new EBVs ('𝑢;) for a group of animals of 

interest 
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Abstract 
Background: Cross-validation tools are used increasingly to validate and compare genetic evaluation methods but 
analytical properties of cross-validation methods are rarely described. There is also a lack of cross-validation tools for 
complex problems such as prediction of indirect effects (e.g. maternal effects) or for breeding schemes with small 
progeny group sizes.

Results: We derive the expected value of several quadratic forms by comparing genetic evaluations including 
“partial” and “whole” data. We propose statistics that compare genetic evaluations including “partial” and “whole” data 
based on differences in means, covariance, and correlation, and term the use of these statistics “method LR” (from 
linear regression). Contrary to common belief, the regression of true on estimated breeding values is (on expecta-
tion) lower than 1 for small or related validation sets, due to family structures. For validation sets that are sufficiently 
large, we show that these statistics yield estimators of bias, slope or dispersion, and population accuracy for estimated 
breeding values. Similar results hold for prediction of future phenotypes although we show that estimates of bias, 
slope or dispersion using prediction of future phenotypes are sensitive to incorrect heritabilities or precorrection for 
fixed effects. We present an example for a set of 2111 Brahman beef cattle for which, in repeated partitioning of the 
data into training and validation sets, there is very good agreement of statistics of method LR with prediction of future 
phenotypes.

Conclusions: Analytical properties of cross-validation measures are presented. We present a new method named LR 
for cross-validation that is automatic, easy to use, and which yields the quantities of interest. The method compares 
predictions based on partial and whole data, which results in estimates of accuracy and biases. Prediction of observed 
records may yield biased results due to precorrection or use of incorrect heritabilities.
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of reality that usually holds only in the short run and in 
closely-related populations. !eir properties are rarely 
well known, which can lead to unexpected results. For 
instance, initial applications of genomic predictions of 
breeding values (GEBV) in dairy cattle led to biases, with 
young “genomic” selected bulls with high GEBV being 

overpredicted, as verified by posterior progeny test-
ing [1–3]. As a result, further use of GEBV in the dairy 
industry required extensive cross-validation and a more 
formal analytical framework [4–6].

!e introduction of new methods for genetic or 
genomic evaluation raises the question of model choice 
(comparing across models) and model quality (features 
of a particular model). !us, we need tools to rank, 
understand and quantify the behavior of prediction 
models in an “animal breeding” context. !e need for 
these tools has dramatically increased with the imple-
mentation of genomic selection, given its built-in 
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ABSTRACT

Bias in genetic evaluations has been a constant con-
cern in animal genetics. The interest in this topic has 
increased in the last years, since many studies have 
detected overestimation (bias) in estimated breeding 
values (EBV). Detecting the existence of bias, and the 
realized accuracy of predictions, is therefore of impor-
tance, yet this is difficult when studying small data sets 
or breeds. In this study, we tested by simulation the 
recently presented method Linear Regression (LR) for 
estimation of bias, slope, and accuracy of pedigree 
EBV. The LR method computes statistics by compar-
ing EBV from a data set containing old, partial infor-
mation with EBV from a data set containing all infor-
mation (old and new, a whole data set) for the same 
individuals. The method proposes an estimator for bias 
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!( ), an estimator of slope bp"( ), and 3 estimators re-
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  We simulated a dairy scheme 

for low (0.10) and moderate (0.30) heritabilities. In 
both cases, we checked the behavior of the estimators 
for 3 scenarios: (1) when the evaluation model is the 
same as the model used to simulate the data; (2) when 
the evaluation model uses an incorrect heritability; and 
(3) when the data includes an environmental trend. For 
scenarios in which the evaluation model was correct, 
the LR method was capable of correctly estimating 
bias, slope, and accuracies, with better performance for 
higher heritability [i.e., corr b bp p, "( ) was 0.45 for h2 = 
0.10 and 0.59 for h2 = 0.30]. In cases of the use of incor-
rect heritabilities in the evaluation model, the bias was 
correctly estimated in direction but not in magnitude. 

In the same way, the magnitudes of bias and of slope 
were underestimated in scenarios with environmental 
trends in data, except for cases in which contemporary 
groups were random and greatly shrunken. In general, 
accuracies were well estimated in all scenarios. The LR 
method is capable of checking bias and accuracy in all 
cases, if the evaluation model is reasonably correct or 
robust, and its estimations are more precise with more 
information (e.g., high heritability). If the model uses 
an incorrect heritability or a hidden trend exists in the 
data, it is still possible to estimate the direction and 
existence of bias and slope but not always their magni-
tudes.
Key words: genetic evaluation, BLUP, bias, accuracy
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The study of bias has become more relevant in the 
last years, as several works have shown differences be-
tween the estimated genetic value of top young bulls at 
genomic prediction and after progeny results (Spelman 
et al., 2010; Sargolzaei et al., 2012). The most frequent-
ly used statistics to analyze bias in selection schemes 
are as follows: b u u0 = −ˆ  [the difference between the 
averages of estimated breeding values û (EBV) and 
true breeding values u (TBV)], associated with the 
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of TBV on EBV), related to the dispersion of the EBV. 
Values of b0 < 0 underestimate and b0 > 0 overestimate 
TBV. Similarly, values of b1 < 1 represent an overesti-
mation of selected animals. Both biases produce varia-
tion in the expected genetic gain, with implications at 
the moment of selection (Boichard et al., 1995; Män-
tysaari et al., 2010).

Studies in Lacaune sheep have shown overestimation 
of genetic gain (b0 > 0) as well as overdispersion (b1 < 
1) of the genomic estimated breeding values (GEBV), 
with more effect in those traits under important selec-
tion pressure (Astruc et al., 2014; Baloche et al., 2014). 
The origin of these biases is unknown, and they should 
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Method LR in a nutshell

•We can use these ideas in reverse:
• If the mean(EBV) does change there is a problem
• If the dispersion does not hold to the theory there is a problem
• either Henderson’s theory was wrong (maybe) or our genetic 

evaluations are wrong (likely)

• Also, average change indicates reliabilities
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