

Irish sheep sector

- The Irish sheep sector is largely focused on spring lamb production
- In 2020 there were 2.7 million breeding ewes
 - 80% lowland
 - 20% hill
- 35,505 farms with sheep enterprise (CSO,2022)
 - Average farm size 83 ewes
 - 17,435 specialist sheep farms
- 335% self-sufficient in sheep meat
- Irish sheep meat exports- €420 million (Bord Bia, 2022)
 - +12% vs. 2020
 - France largest market (30.5%)

National GHG emissions - Sheep

- Livestock have been identified as a notable source of GHG emissions
- Agriculture is responsible for 37% of national GHG emissions
- Agricultural sector dominant by cattle related emissions
- Sheep emissions peaked in 1990s.
- Slow increase in sheep related emissions since 2010
- Need to contribute to the mitigation of GHG emissions

System boundary

Life cycle assessment (LCA)

Includes:

- Emissions released by on-farm processes
- Emissions released during the production of farm inputs

System boundary

- Cradle-to-farm gate
 - Emissions generated up to the sale of animals.

Global warming potential

- Carbon dioxide 1 kg CO₂-eq
- Methane 28 kgCO₂-eq
- Nitrous oxide 265 kg CO₂-eq

Output

- Live weight
- Carcass weight
- Wool

Average lowland system

System overview	
Stocking rate (ewes/ha)	7.7
Nitrogen use (kg N/ha)	73
Lambing period	March
Lambing rate	1.48
Lamb mortality	7.60%
Weaning rate (lambs/ewe)	1.37
Replacement rate (%)	20
Animal performance	
Birth weight	4.8
Weaning weight	30.7
Drafting weight	45.7
Lamb carcass weight	20.4
Drafted by 1st October	57%
Concentrate (kg/ewe)	103

National Average

Average GHG intensity

- 10.8 kg CO₂ eq/kg live weight
- 5,759 kg CO₂ eq/hectare

Methane = 64%
Methane from enteric fermentation
dominant source

Nitrous oxide= 20% Synthetic fertiliser, grazing and manure management

Carbon dioxide = 16% Concentrate feed production and fossil fuel use

Potential mitigation potential

Improve grassland management

- Soil fertility
- Incorporation of white clover into swards
- Reduce reliance on synthetic nitrogen
- Reduce need for concentrate
- Higher daily live weight gain

Fertiliser type

 Switching CAN for protected urea reduces N₂O emissions

Genetic selection

- Improve the prolificacy of ewes
- Higher daily live weight gain

Strategies to reduce GHG

Where are you on the 10 Steps to Reduce Emissions of YOUR FARM?

Source: Carbon Navigator

Diet

Breeding

Management

Stocking Rate x Prolificacy

System Performance

802

1.8

14 ewes/ha

744

1.5

628

1.8

lambs/ewe lambs/ewe lambs/ewe lambs/ewe lambs/ewe

12 ewes/ha

100

361

1.5

412

1.8

10 ewes/ha

392

1.5

Weaning rate (lambs/ewe)	1.5			1.8		
Stocking rate (ewes per ha)	10	12	14	10	12	14
Land area (ha)	20	20	20	20	20	20
Ewes bred	213	256	294	215	259	299
Nitrogen use (kg N/ha)	113	145	181	113	145	181
Performance						
Lambs born (March)	363	441	529	464	542	631
Lambs weaned (June)	320	385	440	387	468	538
Lambs drafted (June- January)	280	335	399	343	410	479
Birth weight (kg)	5.2	5.1	5.0	4.6	4.8	4.6
Weaning weight (kg)	31.5	32.6	31.3	31.6	28.7	30.5
Lamb carcass weight (kg)	19.5	19.5	19.7	19.9	19.7	19.8
Total carcass sold (kg/ha)	273	327	393	341	403	474
Drafted by 1st October	75%	55%	47%	63%	68%	50%

Teagasc lamb production model

Flock net energy

Grass, Silage & Concentrate

Land
Capital
Labour
Animals
Mortalities
Variable costs
Fixed costs

Greenhouse gas intensity

Future research required

National Inventory uses IPCC tier one methodology for sheep

- May not be representative of sheep in Ireland
- Does not pick up improvements made in system efficiency

Current LCA methodology uses international default emission factors

- May not be representative
- Need to develop country specific emission factors

Further assessment of he effect of management practices

PACs

SF₆

GreenFeed

Respiration Chamber

Respiration Chamber

- ➤ 1 animal per chamber
- > Animals enclosed for 48hrs

> Pros

- Deemed the 'gold standard'
- Allows for DMI and water intake
- Values accepted to national inventory

> Cons

- > Low animal throughput
- > Expensive technique
- > Labour intensive
- Unnatural environment for the animal

SF₆

- Individual equipment required per animal
- Measurement run takes 6 days

> Pros

- ➤ Correlates well to RC (0.69, Munoz et al., 2012)
- Allows animals to be measured at pasture
- Values accepted to national inventory

> Cons

- ➤ Low animal throughput
- > Expensive technique
- > Labour intensive

PACs

- > 12 animals per run (72 per day)
- ➤ Measurement run takes 50min

> Pros

- ➤ Correlates well to RC (0.55, O'Connor et al., 2021)
- Allows animals to be measured at pasture
- > Higher animal throughput
- Labour efficient

> Cons

- Used as a ranking tool only
- > Equipment is moisture sensitive

Data Collection

Methane measurements collected using PAC

Data Collection

Methane recs

The effect of life-stage on the ranking of methane output and DMI in sheep

Comparing methane output from ruminants

Respiration Chamber, g/day

469

205

29.5

SF6, g/day

422

189

37.3

0.4-0.6 g CH₄ per kg live-weight

Factors affecting methane output

Diet

Methane output

Breeding

Selecting on €uro-star indexes

Greenhouse gas intensity

Reducing Days to Slaughter

eagasc

Direct Selection

Why measure methane in sheep?

- Identify high and low emitters in the flock
- Develop breeding values for methane

Genetics of methane

Sheep Ireland

- Variation between animals for methane?
- Results to date:
 - Heritable → 25%
 - Repeatable → 39%

Carbon sub-index

Current EBI

EBI + CBI C @ €160/t

Next steps

Key messages

- Irish sheep systems:
 - High value, nutritional commodity produced from grass
 - Average carbon footprint 10.8 kg CO₂eq/kg LW
- Methane measurements:
 - PAC validated
 - Baseline sheep methane data
 - Multitude factors affect methane → feed intake & diet type
- Must be proactive in adopting mitigation strategies:
 - Management, breeding & diet

SMARTER PARTNERS

Thank you for your attention

www.smarterproject.eu

