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Outline

1. Status quo: application of vaccination &
selective breeding as infectious disease control

— Do they limit transmission?

2. New insights from experiments & modelling
studies

3. Nowcasting & forecasting COVID-19 spread
iIn Scotland a5



The role of vaccines in reducing disease transmission

Vaccine efficacy:
Susceptible > Infected The ability of a vaccine to
protect against adverse
effects of the infection
to the vaccinated individual
(Pastoret, 1997)

» Vaccines do not necessarily
protect from becoming
infected & transmitting the
infection

« Vaccination studies ignore
individual variation




Marek’s disease vaccines in poultry

e Cancer caused by the Marek’s disease
virus (MDV)

« Controlled through wide-spread vaccination

 MD vaccines are ‘leaky’, i.e. they inhibit
formation of tumour, but don’t block
Infection & transmission of the MDV

—ROSLEIN



Vaccination may drive virulence evolution

Witter et al. 1997
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Genetic disease control in farm animals

Universal evidence for genetic variation in
response to infectious pathogens & treatment

Genetic selection for disease resistance
advocated as a viable (green) disease control

Highly successful for some diseases

— Mostly where host resistance is controlled by a
single gene

But limited applications & success for the
majority of ‘polygenic’ diseases

ROSLIN
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Requirements for genetic selection for
disease resistance

1. BIG Data
» genetic / genomic information from 1000s of animals
* Informative disease records for these animals

— Field disease data are notoriously noisy
2. Statistical models that can unmask the genetic signal
 Identifying genetically resistant animals with high accuracy is difficult

3. Genetic-epidemiological prediction models
« To predict impact of genetic selection on future disease prevalence
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Example bovine Tuberculosis

= One of the most persistent
animal health problems

Mycobacterium bovis = Endemic in many countries

R\-‘,\"‘V""'-_;: Mycobacteriaceae

e Grar » Huge financial losses
- " ‘q Bacillus : aerosol
h“ s aerobic ' droplets
Cattle
zoonotic

Unpasteurized o
milk /s

'-T" e ,.‘

= An important public
human health concern

/# 'ﬁl'ﬁ'l‘ﬂ‘ /Q‘JA » zoonotic transmission
{Cervus elaphus) (Meles meles)

» 10-15% of human TB cases

caused by bTB in
Huge bTB eradication efforts world-wide developing world

—ROSLEN



Failed attempts to eradicate bTB in UK cattle

e No safe vaccine

« Stringent routine herd testing & culling of
infected cattle + movement restrictions
until herd is declared bTB free

* Very labour intense and expensive

« But strategy not sufficient for eradicating the
disease

« Badger culling
* Only short term benefits
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140 -

Genetic bTB control

100 -

m Breakdown mInterval

80 -

Huge dataset for genetic analyses:

60 -

No. of sires

« Genetic data available from routine genetic w0 |
evaluations (>1 Mio cattle) 20 1
o D|Sease phenotypes from test & CU” reg|me 0 +rrrrrrrrrrrrreer SARRM '---I-“-“"“'”'"l"|'|""" """""""" h'h"ll"' """ I"‘”'

(~500,000 cows, >10,000 bTB positive herds)
Strong evidence for genetic variation in bTB
resistance

 Heritability: 0.08-0.23; polygenic resistance
 Prediction accuracy: 72%
2016: Launch of TB Advantage selection index:
» Voluntary selection of bulls with high genetic bTB
resistance

. rB{yfg(_e\piﬁ?miologicaI benefits unknown

Sire EBV




Genetic-epidemiological model for bTB

Susceptible ]

(B (14T) U U 0

®

Genetic variation in ' Removed |
bTB resistance

«%x * Model bTB transmission dynamics within each exposed herd
g i e e Use UK national bTB & genetic studies to inform model
Gt el parameters

Wi e Simulate genetic selection & current bTB control measures

Kethusigele et al., Front. Vet. Sci. 2018



Impact of genetic selection on reducing bTB
prevalence: beneficial but slow

~ 100 -
< -A- 70%
50%

“=- 2% Risk of bTB breakdown in a herd

—— 10%

(0}
o
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o

H’H o Before selection = 81.8%

M
o

| 'H_;H o Reduced by half after 4-15
generations of selection

N
o

Mean probability of breakdown to occur (%

o

0 2 4 3 8 10 12 14 16 18 20
Generation

Genetic selection for bTB resistance helps to reduce bTB incidence, but not
sufficiently effective to eradicate bTB

Kethusegile R. et al, Front. Vet Sci. 2018.



Towards more effective genetic disease control

Susceptible > |nfected

Adapted from Doeschl-Wilson et al,, Animal 2021

Current focus on improving

individuals’ disease resistance:

 Resistance to infection, given
exposure

* Resistance to adverse side
effects of infection, given
infection

Genetic effects on
transmission usually ignored



Change focus on reducing transmission

Susceptible > Infected Focus on reducing transmission

 Susceptibility = propensity of a
susceptible individual to become

infected, given exposure

* Infectivity = propensity of an
individual to transmit the
infection to a susceptible
individual (of average
susceptibility), given infection

Adapted from Doeschl-Wilson et al., under review in Animal



Much evidence for individual variation in infectivity
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COVID-19: 'Superspreader' Santa
blamed for coronavirus outbreak at
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Superspreading and the effect of individual
variation on disease emergence

Is infectivity genetically controlled?
N



Infectivity questions

1. If there was genetic variation in infectivity, can
we detect it?

— What type of data / models are required?

2. How big is the genetic variation in infectivity?
— And how is it correlated with resistance?

3. Can we substantially reduce disease
transmission by selection for low infectivity?
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BORAE
Infectivity

Approach

\Marek's disease

_. “

1. Develop methodology
& validate on simulated data

2. Design & conduct disease
transmission experiments

3. Apply to field data

ROSLIN



Methodology

HORQAE

Bayesian Inference

Input data

> Estimates / Predictiorh

Pedigree /
genomic data

Fixed effects, e.q.
vaccination status

of individuals’
infection status

Repeated measures

Genetlc (anlmal) model

- @GD\@

nidemiological model

=

Observational model

\

Genetic risk estimates for
ﬂ Susceptibility & Infectivity &
OV

Effects of fixed effects on
Susceptibility & Infectivity

mmm) True infection times &
duration of infectious period

| | | >
\ T, iP T; T, |
0 1 1 1 Anacleto et al. Genetics 2015
0 0 0 1 Pooley et al. Plos Comp. Biol 2020




Genetic Variance

Key findings to date

—

Susceptibility

.
e

.
—
e S—

* |tis possible to get accurate, unbiased estimates for —
genetic infectivity (& other traits) given appropriate data “infectivity
— Model can identify genetic super-spreaders, if they exist | Egj
« Estimating infectivity requires ‘specific’ sampling design
— several independent epidemics with genetically related animals
(e.g. herds) SNP effects
— Temporal information of individual’s infection / survival status D)OLSusceptgﬁﬂ
* Robust estimates even for noisy / incomplete data ﬁgﬁ,:' e
UL @I GW Ll

AN Anacleto et al. Genetics 2015, Pooley et al. Plos Comp. Biol. 2020



Insights from transmission experiments

Marek's disease
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Marek’s disease transmission experiments

Shedders Contact birds
g g g Measures:
, x3 ' - Virus load in blood
.Shedder b|rc;ls BT & feather follicles at
inoculated with transmission: N=10  different time points
Virulent MD Virus 48h contact _ Presence of tumour
g 8 weeks post contact
' 3 ‘ - Mortality
Shedders N=10

V= Vaccinated Birds (HVT) fe;ﬁczxtgj”me”ta'
U= Unvaccinated Birds
(sham vaccine) Dunn, Cheng et al,, USDA ADOL



Surprising indirect effects of vaccination

1.00 -

Vaccine effects on vaccinated shedder birds:

* Vaccinated shedder birds did not develop MD
when infected with MDV

* Vaccinated shedder birds still shed the virus when
infected

o

~

o
L

Vaccine effects on non-vaccinated contact birds:

* Almost all contact birds became infected

« BUT: contact birds exposed to infected vaccinated
shedders were less likely to develop MD and die

Contact bird MD status 0.00- -

Uninfected ' '
Infected onl Exposed to Exposed to

M Infected and diseased
B Infected, diseased and dead V shedders U shedders

N Bailey et al.,, PloS Biol. 2019

Contact bird proportion
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Virus transmission from vaccinated birds causes
dose-dependent reduction in virus virulence

B Shedder Path analysis:

- B Contact bird Contact
FVL

w
L

©
‘2 $kk Kk
N * 0.08
©
8 .
c:u 0 Sht-addt_er ok Shedder « Con.tact bird
£ . vaccination fess— FVL disease
g, ‘ status status
= ! * ok ok ETTY
3 ]
0.053
Contact
M groupmate
FVL
ns
V shedders U shedders Similar trends for comparing transmission patterns between birds

with high / low genetic resistance to MD
' ' ) ine eff
Batley et al, PloS Biol. 2019 Although effects were less pronounced than vaccine effects



What are the implications on Does this have implications
onwards transmission and for other diseases?
virulence evolution?

Witter et al. 1997

Relative virulence

1540 1580 1880 200 2020 2040

Under current investigation
POST-DOC OPPORTUNITY!!
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‘The IPN lucky case’ (Atlantic salmon)

mortality rates
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Atlantic salmon chromosome number

% Gen. var. explained

*Houston et al. (2008) Genetics & (2010) Heredity.
Moen et al. (2009) BMC Genomics

Infectious Pancreatic Necrosis Virus
Causes high mortality at freshwater stage and at sea

Single QTL explains most genetic variation in mortality
Breeding for disease resistance has drastically reduced

Mortalities
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IPN transmission experiment ﬂNofima

Infected Susceptible Partially resistant  Resistant
shedders

ss
(n=8) #
Uninfected
Cohabitants SS Rs SS Rs SS Rs
(n=40)

Record time to death in cohabitant and shedder fish

Estimate genotype effects on (cohabitant) susceptibility & (shedder) infectivity
iU NS RN

J



Statistical models for epidemiological parameter estimates

Estimate B, and y, for each shedder - cohabitant genotype combination k:

1. Bayesian algorithm (MCMC) to infer infection times

from mortality data B Y .

2. Generalized linear mixed models to estimate 3, and y,

Number of cases C,(t) atday t: C,(t)~binomial(S(t), p,)
Bl

Probability of infection: p,=1— e N
GLM: log(—log(1 —py) = XEb +1log(*/y) b= log(B)

OS] N Doeschl-Wilson et al., Proc. WCGALP 2018



R-allele reduces both susceptibility & infectivity

ss cohabitants Rs cohabitants
Shedder
[]RR
Rs
SS
Relaotsive risli( of ir;fi"ectiozrﬂl : Rela’;;ve risio( of in?ectiorzlﬂ

 ss cohabitants were >10 times more susceptible to infection than Rs cohabitants
e ss shedders were at least 2x more infectious than RR shedders

Doeschl-Wilson et al.,, Proc. WCGALP 2018



R Benchmark
Genetics Norway

ISA virus infections (Atlantic salmon)
ﬂNofima

» Infectious Salmon Anemia Virus
» Listed as notifiable disease = control disease spread
« Mostly controlled by vaccines with limited effectiveness

« Genetic selection for ISA resistance (EBV for survival given
exposure) ongoing

Does selection for ISA resistance reduce

ISAV transmission?

- Transmission experiment to assess effect of
genetic selection & vaccination on ISAV

transmission
OSSN




Selection for ISA resistance reduces infectivity, but not
susceptibility

Susceptibility Infectivity
A - 8f1 7T gr2 £r3 A — fsl '''' fsz fs3
> 5 Low resistance EBV
z z High resistance EBV
E E Low resistance EBV
+ Vaccinated
| _._«—T’/ L | Sogl Ly ; _i/

-2 -1.5 -1 -0.5 0 0.5 l 1.5

Parameter Value Parameter Value

‘Resistance’ EBV has larger effects on infectivity than susceptibility
Genetic effects on infectivity larger than vaccine effects

Chase-Topping et al., Aquaculture 2021



Application to field data:
Bovine Tuberculosis

Proof of concept:
 Empirical evidence for genetic variation in infectivity

“ frontiers Veterinary Epidemiology and * EX pe I’I me ﬂta | eV| d ence fO I h |g h

n Veterinary Science Economics

variation in shedding rates

SECTION ~ ABOUT  ARTICLES  RESEARCH TOPICS ~ FORAUTHORS *  EDITORIAL BOARD ARTICLE ALE|
L]
< Articles Bovine Tuberculosis — International Perspectives on Epidemiology and Mana ® EVI d e n C e fo r p re S e n C e Of bT B
L]
superspreaders from field data
Front. Vet. Sci., 0 ttps://doi.org/10.3389/fvets.2018.00310 ’.)

ecember 2018 | https://doi.org/10.3389/fvets.20
mmmmmm

Can We Breed Cattle for Lower Bovine TB Infectivity? * Prelimina ry estimates from
T Bt oottty S e quantitative genetic analyses indicate
similarly high heritability for

infectivity as for resistance
Tsairidou et al., Front. Vet Sci 2008



Application to field data:
Bovine Tuberculosis

Proof of concept:

* Genetic-epidemiological model confirms potential benefits
from incorporating infectivity into genetic selection

« Adding infectivity into the selection index
could double the rate of reduction in bTB risk
 Project on adapting SIRE software to bTB

currently ongoing "FeZ Lo I L

"I I ST

Relative epidemic risk
02 04 08 08

"7 TGeneraon " T T 7T Tsairidou et al,, Front. Vet Sci 2008



Take-home messages from animal models

« Vaccination and host genetics potentially play an important role in
reducing pathogen transmission

« But their actual effects on transmission are rarely known & difficult
to directly measure

* Novel Bayesian Inference tools can estimate vaccine and genetic
effects for transmission traits from temporal individual-based
epidemiological data

* Genetic-epidemiological prediction models can predict the
outcome of combined control strategies

ROSLIN



éﬁéé’é THE UNIVERSITY I' I Data-Driven
N/ of EDINBURGH Innovation
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Data-driven now-casting & fore-casting
of COVID-19 spread in Scotland

antributing to

e

Scottish COVID-19
Response Consortium




A typical day in a politician’s life
4

~N

What movement
restrictions?

When to open / close
schools & universities?

"
[ Who to vaccinate What travel
first? restrictions?

How many hospital
beds to reserve?

What test &
qguarantine rules?

Public Health 9‘6

Interventions need to be: Scotland
» Timely and targeted eDRIS: electronic Data

. Based on data—infOrmed mode|s Research & Innovation Service
COVID-19 data for research




Covid-19 dashboard for Scotland

Weekly COVID-19 cases per 100,000

Weekly Rate RS W (1 o ember 2020
] Weekly Ratio ;i ‘ 3 o . o

High rate in over 80s
Exceeding rate
O Exceeding ratio

Main Zone: Currie East - 03
Weekly rate: 408
Weekly ratio: 1.77

Weekly rate
0

1-49
50-99 |
100-199
200-399
400-599
600-799
800+
NA

« Rapid identification of weekly
Y COVID-19 hotspots

L « Accompanied with statistics for
specific areas & age category

https.//theiteam.shinyapps.io/COVID19Scotland_TrackandModel/



Weekly changes in COVID-19 cases

O Weekly Rate

Raethil

N o sal K =
Weekly Ratio e Main Zone: Musselburgh South - 02
D Hiah . 20 r pﬁuﬁ'ﬁ_" Weekly rate: 70
Igh rate in over a0s 7 il Weekly ratio: 3.36
(] Exceedingrate - :2°( ¥ o
- - : .—“‘"w'
Exceedingratio @ ° _  see

............

nnnnnnnnn

Weekly ratio \
1-2 B -

2-3 o - g A SR B S B 8
5+

N/O (new cases)
NA

wwwwww
B imarmock

»»»»»»

AAAAA  Ratio R: a proxy for

.. Mid November 2020 the local . |
| reproductive ratio

https://theiteam.shinyapps.io/COVID19Scotland_TrackandModel/



Weekly changes in COVID-19 cases

(] Weekly Rate g7
Weekly Ratio - et
(] High rate in over 80s

[ Exceeding rate
Exceeding ratio

Weekly ratio
0/0
0-1
1-2
2-3
4
i
N/O (new cases)
NA

https://theiteam.shinyapps.io/COVID19Scotland_TrackandModel/

Modelling questions:

1. What drives the spatial
variation in these patterns?

2. How were these affected by
the implemented Covid-19
control measure?

3. Can we predict the next
Covid hotspot?

 Ratio R: a proxy for

f< .. Mid November 2020 the local

reproductive ratio



Scottish COVID-19 trends & event timeline

paniwliad YN ul |oAel ] w
puepoog ul Aeig QN
ha———
<
_—
siabuassed aulplie 1o} auiuetenb po| W
P

—

¥ [9AS7] PUBROOS IV

IIIM

UOIJBUIOORA JO LE]S

\\i.
ﬁ Po]0a]ap JUBLIEA JUSY| W
uibag s|aAaT uono8}oId ﬂ\/
- ——
suonoL}say [euoibay
sbuliayjeb [e100s uo suonoLISay -
UMOPX20T JO }N0 8)n0Y € aseyd
UMOP207T JO 1IN0 8)N0Y | aseyd
UMOPX207 Jo Aep 1Sl
o o o o o o o
8 3 8 3 8 B
o N N -

sase9 JOo JaquinN

120¢/S0/€0
120¢/¥0/9¢
L20¢/v0/61
L20c/v0/CL
120¢/v0/S0
120¢/€0/6¢
120¢/€0/ce
1202/€0/S1
1202/€0/80
120¢/€0/10
L20¢/c0/ce
120¢/co/S1
120¢/20/80
120¢/c0/10
120¢2/10/5¢
1202/10/81
L2c0c/10/LL
120¢2/10/v0
0c0c/eLige
0coc/el/ie
0coc/elivi
0c0c/cL/L0
0coc/LL/0E
0coc/Li/ee
0coc/LL/9L
020¢/1 1160
0c0c/L /20
020¢/0L/9¢
0coc/oL/el
0coc/oL/cl
0c0¢/01/50
020¢/60/8¢
020¢/60/1¢
0c0c/60/v1L
020¢/60/L0
020¢/80/L€
020¢/80/ve
020¢/80/.L1L
020¢/80/01
020¢/80/€0
0c0¢/10/Le
020¢/.0/0¢C
0coc/Lo/el
020¢/.0/90
020¢/90/6¢
020¢/90/ce
020¢/90/G1
0202/90/80
020¢2/90/10
020¢/50/9¢
020¢/S0/81
0c0c/so/LL
020¢/S0/70
020¢/v0/Le
020¢/v0/0C
0coc/vo/el
020¢/v0/90
020¢/€0/0€
0coc/eo/ee
020c/€0/91
020¢/€0/60
020¢/€0/20



Vaccination timeline - Scotland

Easing of movement

restrictions

Full Lockdown
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A COVID-19 epidemiological model

E: Exposed

A: Asymptomatic
)P Pre-symptomatic
l: Symptomatic

R: Recovered

C: Critically ill
D: Dead

d = demographic classification

* Quality of predictions depends on accuracy of model parameter estimates
« Accurate parameter estimates requires good data



Adaptation of inference methods developed for
livestock epidemics to humans

* Account for various sources of heterogeneity
— Spatial heterogeneity (e.g households, regions, counties...)
— Individual heterogeneity (age, sex, genetics)
— Heterogeneous contact structure

— Temporal heterogeneity due to implementation of local / national
control measures & SARS-Cov2 strains

* Include a variety of data (cases, hospital admissions, deaths,
demographic, ...)

o™ Ir" 3
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Classical Bayesian inference approaches

é SIMULATION-BASED PROPOSAI.\

« Initial particle state (6;,¢;)
Examples:

Sample 6,~K(6,|6;) « ABC

« ABC-Sequential Monte-Carlo
* Particle MCMC

Simulate &, from model using 6,

Calculate error function EF(S,)

If EF (§,) > EF . reject else
accept with prob.  k(6;16,) n(6,)

\_ K(6,16;) m(6) )




Classical Bayesian inference approaches

é SIMULATION-BASED PROPOSAI.\

Poor Inference

* Initial particle state (6;,¢;) ST T T T T Posterior -

4| True = ===

UMOPY20T

35

« Sample 6,,~K(6,6;)

S EEEEN

* Simulate &, from model using 6 T ool |
p D .
15 \W
. 1+ l‘ . ~\‘~
» Calculate error function EF(£)) o

0 90 100 150 200 250 300 350 400 450

 If EF (&) > EF reject else Time
accept with prob.  k(6;16,) n(6,)

\_ K(6,16;) m(6) )




Model-Based Proposals

é SIMULATION-BASED PROPOSA

L

* Initial particle state (8;,¢;)

- Sample 6,~K(6,0,)

« Simulate &, from model using 6,
* Calculate error function EF(¢,)

 IfEF (&,) > EF; reject else

accept with prob.  k(6:16,)=(6,)
\_ K (6,16;) ™(6;)

J

é MODEL-BASED PROPOSAL

- Initial particle state (8;,&;)
»  Sample 6,~K(6,]6;)

 Adjust ¢, based on the change
from 6; to 6,

* Calculate error function EF(¢,,)

 IfEF (&,) > EF,; reject else

accept with prob.  X(il6y) (6y)
- K (6,16;) ©(6)

\

J




Simulation based vs model based proposals

Simulation based approaches Model based proposals
45 B T I I H I I I T I T I T I
— Posterior 45 - Posterior
4l =4 Trug ==== g True = = = =
g “f 3
357 S 35 I E
3p----. - 5
=207 | =25 ¢
o > i o

\l‘ 2 L
1.5 ¢ ' I 15 |

1_ - 7 1_
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0.5 r - 0.5 |
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Infer reproductive ratio & other epidemiological
parameters for different regions in Scotland over time

Before 15t lockdown (March 2020)
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Conclusions

& visions for

disease
control

> Focus on improving disease resistance.

More effective

BIG data
Shift focus to also

reducing transmission
Incorporate variation

 Limited data

-._'.r

_‘r_wr_'l'h-
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