

The impact of vaccination & genetic selection on disease transmission in farm animals

Andrea Doeschl-Wilson

Prof. Infectious Disease Genetics & Modelling

Outline

- 1. Status quo: application of vaccination & selective breeding as infectious disease control
 - Do they limit transmission?
- 2. New insights from experiments & modelling studies
- Nowcasting & forecasting COVID-19 spread in Scotland

The role of vaccines in reducing disease transmission

Vaccine efficacy:

The ability of a vaccine to protect against adverse effects of the infection to the vaccinated individual (Pastoret, 1997)

- Vaccines do not necessarily protect from becoming infected & transmitting the infection
- Vaccination studies ignore individual variation

Marek's disease vaccines in poultry

- Cancer caused by the Marek's disease virus (MDV)
- Controlled through wide-spread vaccination
- MD vaccines are 'leaky', i.e. they inhibit formation of tumour, but don't block infection & transmission of the MDV

Vaccination may drive virulence evolution

How does vaccination affect MDV transmission?

Genetic disease control in farm animals

- Universal evidence for genetic variation in response to infectious pathogens & treatment
- Genetic selection for disease resistance advocated as a viable (green) disease control
- Highly successful for some diseases
 - Mostly where host resistance is controlled by a single gene
- But limited applications & success for the majority of 'polygenic' diseases

Requirements for genetic selection for disease resistance

1. BIG Data

- genetic / genomic information from 1000s of animals
- Informative disease records for these animals
 - Field disease data are notoriously noisy

2. Statistical models that can unmask the genetic signal

- Identifying genetically resistant animals with high accuracy is difficult
- 3. Genetic-epidemiological prediction models
- To predict impact of genetic selection on future disease prevalence

Example bovine Tuberculosis

Huge bTB eradication efforts world-wide

- One of the most persistent animal health problems
 - Endemic in many countries
 - Huge financial losses

- An important public human health concern
 - » zoonotic transmission
 - » 10-15% of human TB cases caused by bTB in developing world

Failed attempts to eradicate bTB in UK cattle

- No safe vaccine
- Stringent routine herd testing & culling of infected cattle + movement restrictions until herd is declared bTB free
 - Very labour intense and expensive
 - But strategy not sufficient for eradicating the disease
- Badger culling
 - Only short term benefits

Genetic bTB control

Huge dataset for genetic analyses:

- Genetic data available from routine genetic evaluations (>1 Mio cattle)
- Disease phenotypes from test & cull regime (~500,000 cows, >10,000 bTB positive herds)

Strong evidence for genetic variation in bTB resistance

- Heritability: 0.08-0.23; polygenic resistance
- Prediction accuracy: 72%

2016: Launch of TB Advantage selection index:

- Voluntary selection of bulls with high genetic bTB resistance
- But epidemiological benefits unknown
 Royal (Dick) School of
 Veterinary Studies

Banos et al. J Dairy Sci 2017

Genetic-epidemiological model for bTB

- Model bTB transmission dynamics within each exposed herd
 - Use UK national bTB & genetic studies to inform model parameters
- Simulate genetic selection & current bTB control measures

Impact of genetic selection on reducing bTB prevalence: beneficial but slow

Risk of bTB breakdown in a herd

- Before selection = 81.8%
- Reduced by half after 4-15 generations of selection

Genetic selection for bTB resistance helps to reduce bTB incidence, but not sufficiently effective to eradicate bTB

Towards more effective genetic disease control

Current focus on improving individuals' disease resistance:

- Resistance to infection, given exposure
- Resistance to adverse side effects of infection, given infection

Genetic effects on transmission usually ignored

Change focus on reducing transmission

Focus on reducing transmission

- Susceptibility = propensity of a susceptible individual to become infected, given exposure
- Infectivity = propensity of an individual to transmit the infection to a susceptible individual (of average susceptibility), given infection

Adapted from Doeschl-Wilson et al., under review in Animal

Much evidence for individual variation in infectivity

Superspreader: individual, responsible for a disproportional amount of transmissions

COVID-19: 'Superspreader' Santa blamed for coronavirus outbreak at Belgian care home

Superspreading and the effect of individual variation on disease emergence

J. O. Lloyd-Smith^{1,2}, S. J. Schreiber³, P. E. Kopp⁴ & W. M. Getz¹

Is infectivity genetically controlled?

Infectivity questions

- 1. If there was genetic variation in infectivity, can we detect it?
 - What type of data / models are required?
- 2. How big is the genetic variation in infectivity?
 - And how is it correlated with resistance?
- 3. Can we substantially reduce disease transmission by selection for low infectivity?

Approach

Develop methodology
 & validate on simulated data

2. Design & conduct disease transmission experiments

3. Apply to field data

Methodology

Anacleto et al. Genetics 2015

Pooley et al. Plos Comp. Biol 2020

Key findings to date

- It is possible to get accurate, unbiased estimates for genetic infectivity (& other traits) given appropriate data
 - Model can identify genetic super-spreaders, if they exist
- Estimating infectivity requires 'specific' sampling design
 - several independent epidemics with genetically related animals (e.g. herds)
 - Temporal information of individual's infection / survival status
- Robust estimates even for noisy / incomplete data

Genetic Variance

Insights from transmission experiments

Marek's disease transmission experiments

Contact birds

X 16 experimental replicates

Measures:

- Virus load in blood
 & feather follicles at different time points
- Presence of tumour8 weeks post contact
- Mortality

V= Vaccinated Birds (HVT)
U= Unvaccinated Birds
(sham vaccine)

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Surprising indirect effects of vaccination

Vaccine effects on vaccinated shedder birds:

- Vaccinated shedder birds did not develop MD when infected with MDV
- Vaccinated shedder birds still shed the virus when infected

Vaccine effects on non-vaccinated contact birds:

- Almost all contact birds became infected
- BUT: contact birds exposed to infected vaccinated shedders were less likely to develop MD and die

Virus transmission from vaccinated birds causes dose-dependent reduction in virus virulence

Path analysis:

Similar trends for comparing transmission patterns between birds with high / low genetic resistance to MD

Although effects were less pronounced than vaccine effects

What are the implications on onwards transmission and virulence evolution?

Witter et al. 1997 Rispens VV+MDV VMDV VMDV 1940 1960 1980 2000 2020 2040

Under current investigation

POST-DOC OPPORTUNITY!!

Does this have implications for other diseases?

'The IPN lucky case' (Atlantic salmon)

- Infectious Pancreatic Necrosis Virus
- Causes high mortality at freshwater stage and at sea
- Single QTL explains most genetic variation in mortality
- Breeding for disease resistance has drastically reduced mortality rates

IPN transmission experiment

Infected shedders (n = 8)

Uninfected Cohabitants (n = 40)

Record time to death in cohabitant and shedder fish Estimate genotype effects on (cohabitant) susceptibility & (shedder) infectivity

Statistical models for epidemiological parameter estimates

Estimate β_k and γ_k for each shedder – cohabitant genotype combination k:

1. Bayesian algorithm (MCMC) to infer infection times from mortality data

2. Generalized linear mixed models to estimate β_k and γ_k

Number of cases $C_k(t)$ at day t: $C_k(t) \sim binomial(S_k(t), p_k)$

Probability of infection: $p_k = 1 - e^{-\frac{\beta_k I}{N}}$

GLM:
$$\log(-\log(1-p_k) = X_k^T b + \log(I_k/N)$$
 $b = \log(\beta)$

R-allele reduces both susceptibility & infectivity

- ss cohabitants were > 10 times more susceptible to infection than Rs cohabitants
- ss shedders were at least 2x more infectious than RR shedders

15 families

N = 28 per family

Benchmark Genetics Norway

ISA virus infections (Atlantic salmon)

- Infectious Salmon Anemia Virus
- Listed as notifiable disease → control disease spread
- Mostly controlled by vaccines with limited effectiveness
- Genetic selection for ISA resistance (EBV for survival given

exposure) ongoing

Does selection for ISA resistance reduce ISAV transmission?

→ Transmission experiment to assess effect of genetic selection & vaccination on ISAV transmission

N = 270

15 fish/tank

Selection for ISA resistance reduces infectivity, but not susceptibility

- 'Resistance' EBV has larger effects on infectivity than susceptibility
- Genetic effects on infectivity larger than vaccine effects

Application to field data: Bovine Tuberculosis

Proof of concept:

Empirical evidence for genetic variation in infectivity

- Experimental evidence for high variation in shedding rates
- Evidence for presence of bTB superspreaders from field data
- Preliminary estimates from quantitative genetic analyses indicate similarly high heritability for infectivity as for resistance

Application to field data: Bovine Tuberculosis

Proof of concept:

 Genetic-epidemiological model confirms potential benefits from incorporating infectivity into genetic selection

- Adding infectivity into the selection index could double the rate of reduction in bTB risk
- Project on adapting SIRE software to bTB currently ongoing

Take-home messages from animal models

- Vaccination and host genetics potentially play an important role in reducing pathogen transmission
- But their actual effects on transmission are rarely known & difficult to directly measure
- Novel Bayesian Inference tools can estimate vaccine and genetic effects for transmission traits from temporal individual-based epidemiological data
- Genetic-epidemiological prediction models can predict the outcome of combined control strategies

Data-driven now-casting & fore-casting of COVID-19 spread in Scotland

Scottish COVID-19 Response Consortium

A typical day in a politician's life

What movement restrictions?

When to open / close schools & universities?

Who to vaccinate first?

How many hospital beds to reserve?

What travel restrictions?

What test & quarantine rules?

- Timely and targeted
- Based on data-informed models

eDRIS: electronic Data Research & Innovation Service COVID-19 data for research

Covid-19 dashboard for Scotland

Weekly COVID-19 cases per 100,000

- Rapid identification of weekly COVID-19 hotspots
- Accompanied with statistics for specific areas & age category

Weekly changes in COVID-19 cases

reproductive ratio

https://theiteam.shinyapps.io/COVID19Scotland_TrackandModel/

Weekly changes in COVID-19 cases

Mid November 2020

Ratio R: a proxy for the local reproductive ratio

https://theiteam.shinyapps.io/COVID19Scotland_TrackandModel/

N/0 (new cases)

NA

Scottish COVID-19 trends & event timeline

Vaccination timeline - Scotland

A COVID-19 epidemiological model

- Quality of predictions depends on accuracy of model parameter estimates
- Accurate parameter estimates requires good data

Adaptation of inference methods developed for livestock epidemics to humans

- Account for various sources of heterogeneity
 - Spatial heterogeneity (e.g households, regions, counties...)
 - Individual heterogeneity (age, sex, genetics)
 - Heterogeneous contact structure
 - Temporal heterogeneity due to implementation of local / national control measures & SARS-Cov2 strains
- Include a variety of data (cases, hospital admissions, deaths, demographic, ...)

Classical Bayesian inference approaches

SIMULATION-BASED PROPOSAL

- Initial particle state (θ_i, ξ_i)
- Sample $\theta_p \sim K(\theta_p | \theta_i)$
- Simulate ξ_p from model using θ_p
- Calculate error function $EF(\xi_p)$
- If EF (ξ_p) > EF_{cut} reject else accept with prob. $\frac{K(\theta_i|\theta_p)}{K(\theta_p|\theta_i)} \frac{\pi(\theta_p)}{\pi(\theta_i)}$

Examples:

- ABC
- ABC-Sequential Monte-Carlo
- Particle MCMC

Classical Bayesian inference approaches

SIMULATION-BASED PROPOSAL

- Initial particle state (θ_i, ξ_i)
- Sample $\theta_p \sim K(\theta_p | \theta_i)$
- Simulate ξ_p from model using θ_p
- Calculate error function $EF(\xi_p)$
- If EF (ξ_p) > EF_{cut} reject else accept with prob. $\frac{K(\theta_i|\theta_p)}{K(\theta_p|\theta_i)} \frac{\pi(\theta_p)}{\pi(\theta_i)}$

Poor Inference

Model-Based Proposals

SIMULATION-BASED PROPOSAL

- Initial particle state (θ_i, ξ_i)
- Sample $\theta_p \sim K(\theta_p | \theta_i)$
- Simulate ξ_p from model using θ_p
- Calculate error function $EF(\xi_p)$
- If EF (ξ_p) > EF_{cut} reject else accept with prob. $\frac{K(\theta_i|\theta_p)}{K(\theta_p|\theta_i)} \frac{\pi(\theta_p)}{\pi(\theta_i)}$

MODEL-BASED PROPOSAL

- Initial particle state (θ_i, ξ_i)
- Sample $\theta_p \sim K(\theta_p | \theta_i)$
- Adjust ξ_p based on the change from θ_i to θ_p
- Calculate error function $EF(\xi_p)$
- If EF (ξ_p) > EF_{cut} reject else accept with prob. $\frac{K(\theta_i|\theta_p)}{K(\theta_n|\theta_i)} \frac{\pi(\theta_p)}{\pi(\theta_i)}$

Veterinary Studie

Simulation based vs model based proposals

Simulation based approaches

Model based proposals

Infer reproductive ratio & other epidemiological parameters for different regions in Scotland over time

Before 1st lockdown (March 2020)

August 2020

May 2021

Conclusions & visions for disease control

Acknowledgements

Roslin Institute: Margo Chase-Topping, Chris Pooley, Richard Bailey,

Osvaldo Anacleto, Masoud Ghaderi-Zefreh, Jamie Prentice, Smaragda Tsairidou, Enrique Molano-Sanchez, Raphaka Kethsugile, Helen Brown, Stella Mazeri, Steve Bishop, Georgios Banos, John Woolliams

BioSS: Chris Pooley, Glenn Marion (BioSS)

External & Industry partners:

- Hans Cheng, John Dunn, Jody Mays (USDA)
- Marie Lillehammer, Bjarne Gjerde (Nofima) & Veso Vikan team
- Borghild Hillestad, Hooman Moghadam (Benchmark Genetics)
- Marco Winters (AHDB), Andrew Mitchell (APHA)
- Mike Coffey (SRUC), Robin Skuce, Adrian Allen (AFBI)
- Scottish COVID-19 response consortium (SCRC)

