Using milk fatty acids as biomarkers to improve feed efficiency in dairy sheep <u>H. Marina</u>, G. Hervás, R. Pelayo, P.G. Toral, A. Suárez-Vega, B. Gutiérrez-Gil, C. Esteban Blanco, P. Frutos and J.J. Arranz Molecular biomarkers Useful for the genetic improvement of FE traits Complex phenotype: - Several traits (RFI, FCR, FEI) Difficult to measure: - Specialized infrastructure #### Introduction Useful for the genetic improvement of FE traits Feed efficient ewes: Milk de novo fatty acids Polyunsaturated fatty acids (Toral et al. 2021) To identify potential biomarkers for FE in milk and validate those proposed in the previous study ## Methods #### **Dry matter intake (DMI)** 39 Spanish Assaf ewes **Energy-corrected milk (ECM)** ## Methods 4 weeks Energy-corrected milk (ECM) Fatty acid profile #### Spearman correlation: - 50 significant correlations - Ranged from 0.32 to 0.70 #### Linear regression: - 38 significant associations - Adjusted R² values ranged from 0.08 to 0.31 36 common Milk Fatty Acids (MFAs) associated with the FCR parameter | Milk Fatty Acids | Spearman Coef. ¹
(P-value) | R ² Adjusted ²
(P-value) | Milk Fatty Acids | Spearman Coef. ¹
(P-value) | R ² Adjusted ²
(P-value) | |------------------------------|--|---|---|--|---| | 7:0 | 0.403 (0.011) | 0.081 (0.044) | 9:0 | 0.465 (0.003) | 0.119 (0.018) | | 11:0 | 0.539 (0.001) | 0.182 (0.004) | 12:0 | 0.553 (0.001) | 0.153 (0.008) | | 15:0 | 0.494 (0.001) | 0.172 (0.005) | 17:0 | -0.585 (0.001) | 0.194 (0.003) | | 22:0 | 0.687 (0.001) | 0.277 (0.001) | 24:0 | 0.704 (0.001) | 0.294 (0.001) | | 16-oxo-18:0 | -0.577 (0.001) | 0.303 (0.001) | 18:3n-3 | 0.458 (0.003) | 0.15 (0.008) | | 18:3n-6 | 0.345 (0.032) | 0.091 (0.035) | 20:5n-3 | 0.393 (0.013) | 0.127 (0.015) | | cis-11 18:1 | -0.434 (0.006) | 0.101 (0.027) | cis-11 20:1 | -0.492 (0.001) | 0.155 (0.008) | | cis-12 14:1 | 0.418 (0.008) | 0.113 (0.021) | cis-12 18:1 | 0.521 (0.001) | 0.203 (0.002) | | cis-13 18:1 | -0.428 (0.007) | 0.117 (0.019) | cis-16 18:1 | 0.63 (0.001) | 0.313 (0.001) | | cis-7 14:1 | 0.376 (0.019) | 0.084 (0.041) | cis-9 12:1 | 0.429 (0.006) | 0.128 (0.015) | | cis-9 17:1 | -0.61 (0.001) | 0.264 (0.001) | cis-9 18:1 | -0.544 (0.001) | 0.159 (0.007) | | cis-9 trans-11 trans-15 CLnA | 0.365 (0.022) | 0.076 (0.049) | cis-9 trans-13 18:2 | 0.364 (0.023) | 0.124 (0.016) | | iso 15:0 | 0.399 (0.012) | 0.105 (0.025) | iso 17:0 | 0.505 (0.001) | 0.267 (0.001) | | iso 18:0 | -0.384 (0.016) | 0.104 (0.025) | trans-10 18:1 | -0.595 (0.001) | 0.261 (0.001) | | trans-10,trans-14 18:2 | 0.366 (0.022) | 0.116 (0.019) | trans-11 cis-15 18:2 | -0.57 (0.001) | 0.154 (0.008) | | trans-11 trans-13 CLA | 0.479 (0.002) | 0.219 (0.002) | trans-12 18:1 | 0.375 (0.019) | 0.129 (0.014) | | trans-15 18:1 | 0.466 (0.003) | 0.258 (0.001) | trans-4 18:1 | -0.435 (0.006) | 0.183 (0.004) | | trans-9 cis-11 CLA | -0.478 (0.002) | 0.143 (0.010) | trans-9 trans-12 cis-15 + cis-9
cis-12 trans-15 18:3 | 0.527 (0.001) | 0.157 (0.007) | | oPLS | | | | | | |--------|-------------------|------------------|--------------------------|--------------------------|---------------------------| | FCR | Number of animals | Number
of MFA | Explained variation in X | Explained variation in Y | Predictive
Performance | | Groups | 10+10 | 101 | 0.41 | 0.91 | 0.82 | | Values | 39 | 101 | 0.48 | 0.82 | 0.46 | | Milk Fatty Acids | Spearman Coef. ¹
(P-value) | R ² Adjusted ²
(P-value) | Milk Fatty Acids | Spearman Coef. ¹
(P-value) | R ² Adjusted ²
(P-value) | |------------------------------|--|---|---|--|---| | 7:0 | 0.403 (0.011) | 0.081 (0.044) | 9:0 | 0.465 (0.003) | 0.119 (0.018) | | 11:0 | 0.539 (0.001) | 0.182 (0.004) | 12:0 | 0.553 (0.001) | 0.153 (0.008) | | 15:0 | 0.494 (0.001) | 0.172 (0.005) | 17:0 | -0.585 (0.001) | 0.194 (0.003) | | 22:0 | 0.687 (0.001) | 0.277 (0.001) | 24:0 | 0.704 (0.001) | 0.294 (0.001) | | 16-oxo-18:0 | -0.577 (0.001) | 0.303 (0.001) | 18:3n-3 | 0.458 (0.003) | 0.15 (0.008) | | 18:3n-6 | 0.345 (0.032) | 0.091 (0.035) | 20:5n-3 | 0.393 (0.013) | 0.127 (0.015) | | cis-11 18:1 | -0.434 (0.006) | 0.101 (0.027) | cis-11 20:1 | -0.492 (0.001) | 0.155 (0.008) | | cis-12 14:1 | 0.418 (0.008) | 0.113 (0.021) | cis-12 18:1 | 0.521 (0.001) | 0.203 (0.002) | | cis-13 18:1 | -0.428 (0.007) | 0.117 (0.019) | cis-16 18:1 | 0.63 (0.001) | 0.313 (0.001) | | cis-7 14:1 | 0.376 (0.019) | 0.084 (0.041) | cis-9 12:1 | 0.429 (0.006) | 0.128 (0.015) | | cis-9 17:1 | -0.61 (0.001) | 0.264 (0.001) | cis-9 18:1 | -0.544 (0.001) | 0.159 (0.007) | | cis-9 trans-11 trans-15 CLnA | 0.365 (0.022) | 0.076 (0.049) | cis-9 trans-13 18:2 | 0.364 (0.023) | 0.124 (0.016) | | iso 15:0 | 0.399 (0.012) | 0.105 (0.025) | iso 17:0 | 0.505 (0.001) | 0.267 (0.001) | | iso 18:0 | -0.384 (0.016) | 0.104 (0.025) | trans-10 18:1 | -0.595 (0.001) | 0.261 (0.001) | | trans-10,trans-14 18:2 | 0.366 (0.022) | 0.116 (0.019) | trans-11 cis-15 18:2 | -0.57 (0.001) | 0.154 (0.008) | | trans-11 trans-13 CLA | 0.479 (0.002) | 0.219 (0.002) | trans-12 18:1 | 0.375 (0.019) | 0.129 (0.014) | | trans-15 18:1 | 0.466 (0.003) | 0.258 (0.001) | trans-4 18:1 | -0.435 (0.006) | 0.183 (0.004) | | trans-9 cis-11 CLA | -0.478 (0.002) | 0.143 (0.010) | trans-9 trans-12 cis-15 + cis-9
cis-12 trans-15 18:3 | 0.527 (0.001) | 0.157 (0.007) | | Milk Fatty Acids | Spearman Coef. ¹
(P-value) | R ² Adjusted ²
(P-value) | Milk Fatty Acids | Spearman Coef. ¹
(P-value) | R ² Adjusted ²
(P-value) | Leave to the tendence of the control | |------------------------------|--|---|---|--|---|--| | 7:0 | 0.403 (0.011) | 0.081 (0.044) | 9:0 | 0.465 (0.003) | 0.119 (0.018) | neither Illa mely was endered in hereing even to
the ley below her herein help begreened (III). Felche a mouth of a formattion a mer difficient
melli filthe hermen high out hereighteny mittel. (III) relates a media or middente
and has differente well in reflective mittel. (III) which seed form conditional,
and (III) profits and after that III companies. A mission fall mission, below
and the condition of the condition of the condition of the condition of
makes or milk well and suppose to, we will as both
makes or milk well and the condition. On the condition of the
suppose the condition of c | | 11:0 | 0.539 (0.001) | 0.182 (0.004) | 12:0 | 0.553 (0.001) | 0.153 (0.008) | is a tea, Londinous Service to transitudinous conservery accurate feed to a greeky loss products for that contracted from the mobility and transitudinous contracted from the mobility and produce feed and the minutes of the mobility | | 15:0 | 0.494 (0.001) | 0.172 (0.005) | 17:0 | -0.585 (0.001) | 0.194 (0.003) | The contract of the contract of the previous and the contract of | | 22:0 | 0.687 (0.001) | 0.277 (0.001) | 24:0 | 0.704 (0.001) | 0.294 (0.001) | control may year, and is an application for a protection of the control co | | 16-oxo-18:0 | -0.577 (0.001) | 0.303 (0.001) | 18:3n-3 | 0.458 (0.003) | 0.15 (0.008) | Velopolity select (services with star of the text identity pase left 500 | | 18:3n-6 | 0.345 (0.032) | 0.091 (0.035) | 20:5n-3 | 0.393 (0.013) | 0.127 (0.015) | (Toral <i>et al.</i> 2021 | | cis-11 18:1 | -0.434 (0.006) | 0.101 (0.027) | cis-11 20:1 | -0.492 (0.001) | 0.155 (0.008) | | | cis-12 14:1 | 0.418 (0.008) | 0.113 (0.021) | cis-12 18:1 | 0.521 (0.001) | 0.203 (0.002) | | | cis-13 18:1 | -0.428 (0.007) | 0.117 (0.019) | cis-16 18:1 | 0.63 (0.001) | 0.313 (0.001) | | | cis-7 14:1 | 0.376 (0.019) | 0.084 (0.041) | cis-9 12:1 | 0.429 (0.006) | 0.128 (0.015) | | | cis-9 17:1 | -0.61 (0.001) | 0.264 (0.001) | cis-9 18:1 | -0.544 (0.001) | 0.159 (0.007) | | | cis-9 trans-11 trans-15 CLnA | 0.365 (0.022) | 0.076 (0.049) | cis-9 trans-13 18:2 | 0.364 (0.023) | 0.124 (0.016) | | | iso 15:0 | 0.399 (0.012) | 0.105 (0.025) | iso 17:0 | 0.505 (0.001) | 0.267 (0.001) | | | iso 18:0 | -0.384 (0.016) | 0.104 (0.025) | trans-10 18:1 | -0.595 (0.001) | 0.261 (0.001) | | | trans-10,trans-14 18:2 | 0.366 (0.022) | 0.116 (0.019) | trans-11 cis-15 18:2 | -0.57 (0.001) | 0.154 (0.008) | | | trans-11 trans-13 CLA | 0.479 (0.002) | 0.219 (0.002) | trans-12 18:1 | 0.375 (0.019) | 0.129 (0.014) | | | trans-15 18:1 | 0.466 (0.003) | 0.258 (0.001) | trans-4 18:1 | -0.435 (0.006) | 0.183 (0.004) | | | trans-9 cis-11 CLA | -0.478 (0.002) | 0.143 (0.010) | trans-9 trans-12 cis-15 + cis-9
cis-12 trans-15 18:3 | 0.527 (0.001) | 0.157 (0.007) | | Validation | | | Scores | (PLS-DA) | | |--------------------|--------|---|-------------------------------------|-------| | 12 (12%)
-5 0 5 | 15 -10 | 29 27
3225 22
31 38 ₂₆ | 18
10 34 919
8
11
23 24 | 10 15 | | | | | | | | ECB | Number of | Nu | |-------|-----------|----| | 1 (1) | | | | animals | | |---------|--| | 10+10 | | | 39 | | | Number
of MFA | |------------------| | 101 | | 101 | | Explained variation in X | Explained variation in Y | Predictive
Performance | |--------------------------|--------------------------|---------------------------| | 0.41 | 0.91 | 0.82 | | 0.48 | 0.82 | 0.46 | | Closs validated of Ls | | | | , | | |-----------------------|-------------------|------------------|--------------------------|--------------------------|---------------------------| | FCR | Number of animals | Number
of MFA | Explained variation in X | Explained variation in Y | Predictive
Performance | | Groups | 10 | 33 | 0.72 | 0.94 | 0.83 | | Values | 20 | 33 | 0.66 | 0.65 | 0.10 | oPLS Groups Values Particularly, the FCR index showed a significant correlation with the lauric acid (C12:0), fatty acid highly studied in relation to human health Ten long-chain MFAs out of the 33 MFAs highlighted in this study showed **negative** correlations with FCR, suggesting that selecting for higher FE would modify their concentration in the milk # Conclusions and Perspectives - The MFA profile has proven to be useful for predicting FCR - This study has validated in an independent population the results obtained by Toral *et al.* 2021 - Further studies should: - Analyse the 33 MFAs highlighted in this work in a larger population - Consider different approaches (i.e. ML) to assess their accuracy and usefulness - Study the **pros and cons of implementing FE as a breeding target** on the technological and organoleptic characteristics of dairy sheep products ## Acknowledgments www.smarterproject.eu # Acknowledgments